{"title":"Tar DNA结合蛋白43的n端肽缺乏核定位信号易位到GC-1精原细胞的细胞核","authors":"D. S. Varghese, G. Vysakh, Pradeep G. Kumar","doi":"10.25259/jrhm_10_2022","DOIUrl":null,"url":null,"abstract":"\n\nTAR DNA-binding protein of 43 kDa (TDP-43) is an RNA/DNA binding protein expressed in the brain and the testis. Mutations in TDP-43 lead to mislocalization and cytoplasmic aggregation of this protein causing neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 has also been implicated in maintaining spermatogenesis. While homodimerization of TDP-43 is critical for its physiological functions, higher-order aggregation of this protein impairs its functions. This study was aimed to map the critical amino acids of the N-terminus of this protein in mediating its homodimerization.\n\n\n\nWe generated deletion constructs of Tdp-43 containing NRRM1 domain alone (TDP-43∆3-183) and N-terminal peptide of TDP-43 which lacks the nuclear localization signal (NLS) (TDP-43∆1-50) with fluorescent reporters having non-overlapping emission properties. These constructs were co-transfected into a mouse spermatogonial cell line to examine their dimerization and nuclear translocation capabilities in vitro.\n\n\n\nWe found that TDP-43∆3-183 alone was not capable of homodimerization. On the other hand, TDP-43∆1-50 when co-transfected into GC1-spg cells along with full length TDP-43 translocated to the nucleus oligomerized with the latter and translocated to the nucleus, indicating the importance of amino acids 1-50 of TDP-43 in dimerization.\n\n\n\nThe N-terminal segment of TDP-43 spanning amino acids 1-50 is responsible for dimerization, while that spanning amino acids 51-183 directs it to the nucleus.The physiological and pathological implications of this finding need to be examined.\n","PeriodicalId":434467,"journal":{"name":"Journal of Reproductive Healthcare and Medicine","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An N-terminal peptide of Tar DNA binding Protein 43 lacking nuclear localization signal translocates to the nucleus of GC-1 spermatogonial cells\",\"authors\":\"D. S. Varghese, G. Vysakh, Pradeep G. Kumar\",\"doi\":\"10.25259/jrhm_10_2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nTAR DNA-binding protein of 43 kDa (TDP-43) is an RNA/DNA binding protein expressed in the brain and the testis. Mutations in TDP-43 lead to mislocalization and cytoplasmic aggregation of this protein causing neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 has also been implicated in maintaining spermatogenesis. While homodimerization of TDP-43 is critical for its physiological functions, higher-order aggregation of this protein impairs its functions. This study was aimed to map the critical amino acids of the N-terminus of this protein in mediating its homodimerization.\\n\\n\\n\\nWe generated deletion constructs of Tdp-43 containing NRRM1 domain alone (TDP-43∆3-183) and N-terminal peptide of TDP-43 which lacks the nuclear localization signal (NLS) (TDP-43∆1-50) with fluorescent reporters having non-overlapping emission properties. These constructs were co-transfected into a mouse spermatogonial cell line to examine their dimerization and nuclear translocation capabilities in vitro.\\n\\n\\n\\nWe found that TDP-43∆3-183 alone was not capable of homodimerization. On the other hand, TDP-43∆1-50 when co-transfected into GC1-spg cells along with full length TDP-43 translocated to the nucleus oligomerized with the latter and translocated to the nucleus, indicating the importance of amino acids 1-50 of TDP-43 in dimerization.\\n\\n\\n\\nThe N-terminal segment of TDP-43 spanning amino acids 1-50 is responsible for dimerization, while that spanning amino acids 51-183 directs it to the nucleus.The physiological and pathological implications of this finding need to be examined.\\n\",\"PeriodicalId\":434467,\"journal\":{\"name\":\"Journal of Reproductive Healthcare and Medicine\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reproductive Healthcare and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25259/jrhm_10_2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reproductive Healthcare and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25259/jrhm_10_2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An N-terminal peptide of Tar DNA binding Protein 43 lacking nuclear localization signal translocates to the nucleus of GC-1 spermatogonial cells
TAR DNA-binding protein of 43 kDa (TDP-43) is an RNA/DNA binding protein expressed in the brain and the testis. Mutations in TDP-43 lead to mislocalization and cytoplasmic aggregation of this protein causing neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 has also been implicated in maintaining spermatogenesis. While homodimerization of TDP-43 is critical for its physiological functions, higher-order aggregation of this protein impairs its functions. This study was aimed to map the critical amino acids of the N-terminus of this protein in mediating its homodimerization.
We generated deletion constructs of Tdp-43 containing NRRM1 domain alone (TDP-43∆3-183) and N-terminal peptide of TDP-43 which lacks the nuclear localization signal (NLS) (TDP-43∆1-50) with fluorescent reporters having non-overlapping emission properties. These constructs were co-transfected into a mouse spermatogonial cell line to examine their dimerization and nuclear translocation capabilities in vitro.
We found that TDP-43∆3-183 alone was not capable of homodimerization. On the other hand, TDP-43∆1-50 when co-transfected into GC1-spg cells along with full length TDP-43 translocated to the nucleus oligomerized with the latter and translocated to the nucleus, indicating the importance of amino acids 1-50 of TDP-43 in dimerization.
The N-terminal segment of TDP-43 spanning amino acids 1-50 is responsible for dimerization, while that spanning amino acids 51-183 directs it to the nucleus.The physiological and pathological implications of this finding need to be examined.