H. Jia, Hao Tang, Anika Rede, Xia Liu, Huiping Liu, P. Feng
{"title":"生物溶液中乳腺癌细胞的动态操作和模式","authors":"H. Jia, Hao Tang, Anika Rede, Xia Liu, Huiping Liu, P. Feng","doi":"10.1109/MEMSYS.2017.7863470","DOIUrl":null,"url":null,"abstract":"This paper reports the first experimental exploration of non-invasive and fast manipulation of breast cancer cells by harnessing multimode micromechanical resonators operating in biosolution. We demonstrate, for the first time, that groups of breast cancer cells are spatially manipulated into controlled microscale patterns, facilitated by the spatially abundant and diverse multimode resonances of vibrating thin micro-diaphragms. We further show that these cell patterns can be dynamically switched within 30s via programmed excitation frequencies, exhibiting a cell manipulation speed at ∼4μm/s. The results demonstrate a versatile platform for cell manipulation and patterning at microscale, which may facilitate breast cancer related studies at cellular level.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic manipulation and patterning of breast cancer cells in biosolution\",\"authors\":\"H. Jia, Hao Tang, Anika Rede, Xia Liu, Huiping Liu, P. Feng\",\"doi\":\"10.1109/MEMSYS.2017.7863470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the first experimental exploration of non-invasive and fast manipulation of breast cancer cells by harnessing multimode micromechanical resonators operating in biosolution. We demonstrate, for the first time, that groups of breast cancer cells are spatially manipulated into controlled microscale patterns, facilitated by the spatially abundant and diverse multimode resonances of vibrating thin micro-diaphragms. We further show that these cell patterns can be dynamically switched within 30s via programmed excitation frequencies, exhibiting a cell manipulation speed at ∼4μm/s. The results demonstrate a versatile platform for cell manipulation and patterning at microscale, which may facilitate breast cancer related studies at cellular level.\",\"PeriodicalId\":257460,\"journal\":{\"name\":\"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2017.7863470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2017.7863470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic manipulation and patterning of breast cancer cells in biosolution
This paper reports the first experimental exploration of non-invasive and fast manipulation of breast cancer cells by harnessing multimode micromechanical resonators operating in biosolution. We demonstrate, for the first time, that groups of breast cancer cells are spatially manipulated into controlled microscale patterns, facilitated by the spatially abundant and diverse multimode resonances of vibrating thin micro-diaphragms. We further show that these cell patterns can be dynamically switched within 30s via programmed excitation frequencies, exhibiting a cell manipulation speed at ∼4μm/s. The results demonstrate a versatile platform for cell manipulation and patterning at microscale, which may facilitate breast cancer related studies at cellular level.