基于RPBF-SLAM的占用网格地图创建方法研究

Zhao Liang, Weiguang Shi, Shenghao Zhou, Junwei Chen
{"title":"基于RPBF-SLAM的占用网格地图创建方法研究","authors":"Zhao Liang, Weiguang Shi, Shenghao Zhou, Junwei Chen","doi":"10.1109/ACIRS58671.2023.10239753","DOIUrl":null,"url":null,"abstract":"In this paper, the traditional RPBF-SLAM algorithm improves the particle sampling stage, resampling stage and map construction stage, and proposes an offline grid map resolution optimization scheme, which improves the map resolution while ensuring the real-time nature of the algorithm.","PeriodicalId":148401,"journal":{"name":"2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Occupancy Grid Map Creation Method Based on RPBF-SLAM\",\"authors\":\"Zhao Liang, Weiguang Shi, Shenghao Zhou, Junwei Chen\",\"doi\":\"10.1109/ACIRS58671.2023.10239753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the traditional RPBF-SLAM algorithm improves the particle sampling stage, resampling stage and map construction stage, and proposes an offline grid map resolution optimization scheme, which improves the map resolution while ensuring the real-time nature of the algorithm.\",\"PeriodicalId\":148401,\"journal\":{\"name\":\"2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIRS58671.2023.10239753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIRS58671.2023.10239753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在传统RPBF-SLAM算法的基础上,对粒子采样阶段、重采样阶段和地图构建阶段进行改进,提出了离线网格地图分辨率优化方案,在保证算法实时性的同时提高了地图分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Occupancy Grid Map Creation Method Based on RPBF-SLAM
In this paper, the traditional RPBF-SLAM algorithm improves the particle sampling stage, resampling stage and map construction stage, and proposes an offline grid map resolution optimization scheme, which improves the map resolution while ensuring the real-time nature of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信