{"title":"人脸图像质量评估的改进神经网络算法","authors":"N. Lisin, A. Gromov, V. Konushin, Anton Konushin","doi":"10.51130/graphicon-2020-2-3-28","DOIUrl":null,"url":null,"abstract":"The paper considers the task of obtaining a quality assessment of facial images for usage in various video surveillance systems, video analytics, and biometric identification. The accuracy of person recognition and classification depends on the quality of the input images. We consider an approach to obtaining single face image quality assessment using a neural network model, which is trained on pairs of images that are split into two possible classes: the quality of the first image is better or worse than the quality of the second one. Two modifications of the selected baseline algorithm are proposed. A face recognition system is applied to change the loss function and image and face quality attributes are used when training the model. Experimental studies of the proposed modifications show their effectiveness. The accuracy of selecting the best and worst frame is increased by 1.3% and 1.9%, respectively.","PeriodicalId":344054,"journal":{"name":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Neural Network Algorithm for Assessing the Quality of Facial Images\",\"authors\":\"N. Lisin, A. Gromov, V. Konushin, Anton Konushin\",\"doi\":\"10.51130/graphicon-2020-2-3-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers the task of obtaining a quality assessment of facial images for usage in various video surveillance systems, video analytics, and biometric identification. The accuracy of person recognition and classification depends on the quality of the input images. We consider an approach to obtaining single face image quality assessment using a neural network model, which is trained on pairs of images that are split into two possible classes: the quality of the first image is better or worse than the quality of the second one. Two modifications of the selected baseline algorithm are proposed. A face recognition system is applied to change the loss function and image and face quality attributes are used when training the model. Experimental studies of the proposed modifications show their effectiveness. The accuracy of selecting the best and worst frame is increased by 1.3% and 1.9%, respectively.\",\"PeriodicalId\":344054,\"journal\":{\"name\":\"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51130/graphicon-2020-2-3-28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51130/graphicon-2020-2-3-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the Neural Network Algorithm for Assessing the Quality of Facial Images
The paper considers the task of obtaining a quality assessment of facial images for usage in various video surveillance systems, video analytics, and biometric identification. The accuracy of person recognition and classification depends on the quality of the input images. We consider an approach to obtaining single face image quality assessment using a neural network model, which is trained on pairs of images that are split into two possible classes: the quality of the first image is better or worse than the quality of the second one. Two modifications of the selected baseline algorithm are proposed. A face recognition system is applied to change the loss function and image and face quality attributes are used when training the model. Experimental studies of the proposed modifications show their effectiveness. The accuracy of selecting the best and worst frame is increased by 1.3% and 1.9%, respectively.