基于多空间KL的相似度搜索

R. Cappelli, D. Maio, D. Maltoni
{"title":"基于多空间KL的相似度搜索","authors":"R. Cappelli, D. Maio, D. Maltoni","doi":"10.1109/DEXA.1999.795159","DOIUrl":null,"url":null,"abstract":"The Karhunen-Loeve transform is probably the most widely used statistical framework for dimensionality reduction in a broad range of scientific fields. Given a set of points in an n-dimensional space (the points can be derived from images, sounds, or other multimedia objects), KL provides a mapping which reduces the dimensionality of the input patterns to k (k/spl epsiv/3qn), without altering their structure too much. Unfortunately, KL suffers from some scalability problems: in fact, as the size of the database increases, the efficacy and efficiency of the transform progressively vanish. In this work we introduce the basics of a new generalization of KL (named MultiSpace KL or MKL) which allows the scalability problems to be solved and we show how MKL can be used for similarity searches in multimedia databases. The paper reports some preliminary experiments where MKL outperforms KL as the size of the database increases.","PeriodicalId":276867,"journal":{"name":"Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Similarity search using multi-space KL\",\"authors\":\"R. Cappelli, D. Maio, D. Maltoni\",\"doi\":\"10.1109/DEXA.1999.795159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Karhunen-Loeve transform is probably the most widely used statistical framework for dimensionality reduction in a broad range of scientific fields. Given a set of points in an n-dimensional space (the points can be derived from images, sounds, or other multimedia objects), KL provides a mapping which reduces the dimensionality of the input patterns to k (k/spl epsiv/3qn), without altering their structure too much. Unfortunately, KL suffers from some scalability problems: in fact, as the size of the database increases, the efficacy and efficiency of the transform progressively vanish. In this work we introduce the basics of a new generalization of KL (named MultiSpace KL or MKL) which allows the scalability problems to be solved and we show how MKL can be used for similarity searches in multimedia databases. The paper reports some preliminary experiments where MKL outperforms KL as the size of the database increases.\",\"PeriodicalId\":276867,\"journal\":{\"name\":\"Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEXA.1999.795159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.1999.795159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

Karhunen-Loeve变换可能是在广泛的科学领域中最广泛使用的降维统计框架。给定n维空间中的一组点(这些点可以来自图像、声音或其他多媒体对象),KL提供了一个映射,该映射将输入模式的维数降低到k (k/spl epsiv/3qn),而不会过多地改变它们的结构。不幸的是,KL存在一些可伸缩性问题:事实上,随着数据库大小的增加,转换的有效性和效率逐渐消失。在这项工作中,我们介绍了KL(称为MultiSpace KL或MKL)的新泛化的基础知识,它允许解决可扩展性问题,我们展示了MKL如何用于多媒体数据库中的相似性搜索。本文报告了一些初步的实验,其中随着数据库大小的增加,MKL优于KL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity search using multi-space KL
The Karhunen-Loeve transform is probably the most widely used statistical framework for dimensionality reduction in a broad range of scientific fields. Given a set of points in an n-dimensional space (the points can be derived from images, sounds, or other multimedia objects), KL provides a mapping which reduces the dimensionality of the input patterns to k (k/spl epsiv/3qn), without altering their structure too much. Unfortunately, KL suffers from some scalability problems: in fact, as the size of the database increases, the efficacy and efficiency of the transform progressively vanish. In this work we introduce the basics of a new generalization of KL (named MultiSpace KL or MKL) which allows the scalability problems to be solved and we show how MKL can be used for similarity searches in multimedia databases. The paper reports some preliminary experiments where MKL outperforms KL as the size of the database increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信