基于贝叶斯压缩感知的连续聚类线性阵列

E. Bekele, G. Oliveri, A. Massa
{"title":"基于贝叶斯压缩感知的连续聚类线性阵列","authors":"E. Bekele, G. Oliveri, A. Massa","doi":"10.1109/CAMA.2014.7003311","DOIUrl":null,"url":null,"abstract":"Bayesian Compressive Sensing (BCS) is applied for the synthesis of contiguously clustered linear arrays. The standard sub-array problem is formulated as a probabilistic BCS synthesis problem and the Relevance Vector Machine (RVM) is used to obtain a sparse contiguous non-overlapping subarray configuration which has maximal far-field pattern match with a given reference pattern. Selected numerical experiment results are reported to validate the synthesis technique.","PeriodicalId":409536,"journal":{"name":"2014 IEEE Conference on Antenna Measurements & Applications (CAMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contiguously clustered linear arrays through Bayesian compressive sensing\",\"authors\":\"E. Bekele, G. Oliveri, A. Massa\",\"doi\":\"10.1109/CAMA.2014.7003311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian Compressive Sensing (BCS) is applied for the synthesis of contiguously clustered linear arrays. The standard sub-array problem is formulated as a probabilistic BCS synthesis problem and the Relevance Vector Machine (RVM) is used to obtain a sparse contiguous non-overlapping subarray configuration which has maximal far-field pattern match with a given reference pattern. Selected numerical experiment results are reported to validate the synthesis technique.\",\"PeriodicalId\":409536,\"journal\":{\"name\":\"2014 IEEE Conference on Antenna Measurements & Applications (CAMA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Antenna Measurements & Applications (CAMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMA.2014.7003311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Antenna Measurements & Applications (CAMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMA.2014.7003311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将贝叶斯压缩感知(BCS)应用于连续聚类线性阵列的合成。将标准子阵问题表述为一个概率BCS综合问题,利用相关向量机(RVM)获得与给定参考方向图远场匹配最大的稀疏连续非重叠子阵构型。通过数值实验对合成方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contiguously clustered linear arrays through Bayesian compressive sensing
Bayesian Compressive Sensing (BCS) is applied for the synthesis of contiguously clustered linear arrays. The standard sub-array problem is formulated as a probabilistic BCS synthesis problem and the Relevance Vector Machine (RVM) is used to obtain a sparse contiguous non-overlapping subarray configuration which has maximal far-field pattern match with a given reference pattern. Selected numerical experiment results are reported to validate the synthesis technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信