转换语义:一种有效的碰撞检测方法

J. G. R. Maia, C. Vidal, J. B. C. Neto
{"title":"转换语义:一种有效的碰撞检测方法","authors":"J. G. R. Maia, C. Vidal, J. B. C. Neto","doi":"10.1109/SIBGRAPI.2006.43","DOIUrl":null,"url":null,"abstract":"Collision detection is an important problem in many kinds of applications. This work presents an efficient approach for exact collision detection between complex, deformable models. The approach consists of a method for fast extraction of semantics from transformation matrices which places models in a scene, together with a general strategy for fast intersection tests. Non-uniform scaling is also supported efficiently. Our experiments demonstrate that our strategies are well suitable for real-time applications","PeriodicalId":253871,"journal":{"name":"2006 19th Brazilian Symposium on Computer Graphics and Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformation Semantics: An Efficient Approach for Collision Detection\",\"authors\":\"J. G. R. Maia, C. Vidal, J. B. C. Neto\",\"doi\":\"10.1109/SIBGRAPI.2006.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collision detection is an important problem in many kinds of applications. This work presents an efficient approach for exact collision detection between complex, deformable models. The approach consists of a method for fast extraction of semantics from transformation matrices which places models in a scene, together with a general strategy for fast intersection tests. Non-uniform scaling is also supported efficiently. Our experiments demonstrate that our strategies are well suitable for real-time applications\",\"PeriodicalId\":253871,\"journal\":{\"name\":\"2006 19th Brazilian Symposium on Computer Graphics and Image Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 19th Brazilian Symposium on Computer Graphics and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2006.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 19th Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2006.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

碰撞检测是许多应用中的一个重要问题。这项工作提出了一种有效的方法来精确检测复杂的、可变形的模型之间的碰撞。该方法包括一种从变换矩阵中快速提取语义的方法,该方法将模型放置在场景中,以及一种快速相交测试的通用策略。它还有效地支持非均匀缩放。实验表明,我们的策略非常适合实时应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformation Semantics: An Efficient Approach for Collision Detection
Collision detection is an important problem in many kinds of applications. This work presents an efficient approach for exact collision detection between complex, deformable models. The approach consists of a method for fast extraction of semantics from transformation matrices which places models in a scene, together with a general strategy for fast intersection tests. Non-uniform scaling is also supported efficiently. Our experiments demonstrate that our strategies are well suitable for real-time applications
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信