无线局域网应用SPDT开关IC设计中与非均匀基板相关损耗的精确建模和优化

Fadoua Gacim, P. Descamps
{"title":"无线局域网应用SPDT开关IC设计中与非均匀基板相关损耗的精确建模和优化","authors":"Fadoua Gacim, P. Descamps","doi":"10.1109/RFIC.2017.7969034","DOIUrl":null,"url":null,"abstract":"This paper teaches the way to achieve an optimum substrate isolation in RF switch design thanks to Deep Trenches Isolation (DTI). The role of Deep Trench Isolation in substrate coupling around active blocks is analysed in link to its ability to break the conductive buried layers in the substrate. Then, an accurate modelling approach based on quasi-static approach developed for inhomogeneous substrate is investigated. The efficiency of this methodology is first demonstrated thanks to a comparison with a standard numerical method based on FEM (Finite Element Method). Then, experiments data are provided to support this theoretical analysis. The methodology is fully integrated in a commercial design flow and offers a perfect trade-off between accuracy and run time simulation. From available test data on single device and a full SP3T, a correlation better than 0.1dB is obtained between simulation and measurement up to 8 GHz.","PeriodicalId":349922,"journal":{"name":"2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accurate modelling and optimization of inhomogeneous substrate related losses in SPDT switch IC design for WLAN applications\",\"authors\":\"Fadoua Gacim, P. Descamps\",\"doi\":\"10.1109/RFIC.2017.7969034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper teaches the way to achieve an optimum substrate isolation in RF switch design thanks to Deep Trenches Isolation (DTI). The role of Deep Trench Isolation in substrate coupling around active blocks is analysed in link to its ability to break the conductive buried layers in the substrate. Then, an accurate modelling approach based on quasi-static approach developed for inhomogeneous substrate is investigated. The efficiency of this methodology is first demonstrated thanks to a comparison with a standard numerical method based on FEM (Finite Element Method). Then, experiments data are provided to support this theoretical analysis. The methodology is fully integrated in a commercial design flow and offers a perfect trade-off between accuracy and run time simulation. From available test data on single device and a full SP3T, a correlation better than 0.1dB is obtained between simulation and measurement up to 8 GHz.\",\"PeriodicalId\":349922,\"journal\":{\"name\":\"2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2017.7969034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2017.7969034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了在射频开关设计中利用深沟槽隔离(DTI)实现最佳衬底隔离的方法。分析了深沟隔离在基材耦合中的作用,分析了其破坏基材中导电埋地层的能力。然后,研究了基于准静态方法的非均匀基底精确建模方法。通过与基于有限元法的标准数值方法的比较,首先证明了该方法的有效性。然后,用实验数据来支持理论分析。该方法完全集成在商业设计流程中,并在准确性和运行时仿真之间提供了完美的权衡。从单个器件和完整SP3T上的可用测试数据来看,在高达8 GHz的频率下,仿真与测量之间的相关性优于0.1dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate modelling and optimization of inhomogeneous substrate related losses in SPDT switch IC design for WLAN applications
This paper teaches the way to achieve an optimum substrate isolation in RF switch design thanks to Deep Trenches Isolation (DTI). The role of Deep Trench Isolation in substrate coupling around active blocks is analysed in link to its ability to break the conductive buried layers in the substrate. Then, an accurate modelling approach based on quasi-static approach developed for inhomogeneous substrate is investigated. The efficiency of this methodology is first demonstrated thanks to a comparison with a standard numerical method based on FEM (Finite Element Method). Then, experiments data are provided to support this theoretical analysis. The methodology is fully integrated in a commercial design flow and offers a perfect trade-off between accuracy and run time simulation. From available test data on single device and a full SP3T, a correlation better than 0.1dB is obtained between simulation and measurement up to 8 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信