改善重建误差的心电图分段特定建模

A. Mitra, P. Kundu, Rajarshi Gupta
{"title":"改善重建误差的心电图分段特定建模","authors":"A. Mitra, P. Kundu, Rajarshi Gupta","doi":"10.1109/ASPCON49795.2020.9276731","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) modeling is useful for abnormality detection and data compression. The common research problem in modeling is retaining pathological information using minimum number of model coefficients. In this paper, a new modeling technique for different wave segments of ECG signal, viz., baseline to P-onset, P wave, P-offset to Q, QRS complex, S to T-onset, T wave and T-offset to next baseline is presented. The processing steps included preprocessing, R-peak detection, beat segmentation and waveform partitioning, followed by modeling of individual partitions. For P, QRS and T wave, Gaussian model was adopted and for other segments, Fourier model was adopted to minimize reconstruction error. For testing of the proposed model, normal sinus rhythm (NSR) and myocardial infarction (MI) data records of PTB Diagnostic ECG database (ptbdb) and atrial premature (APC), premature ventricular contraction (PVC), left bundle branch block (LBBB) and right bundle branch block (RBBB) data records of MIT-BIH arrhythmia database (mitdb) under PhysioNet were used. The average SNR, and MSE using proposed method for ptbdb NSR was 86.33, and 4.41×10-6, respectively; for AMI 96.18, and 3.70×10-6 respectively; for IMI 80.86, and 1.36×10-6 respectively; for mitdb NSR 90.94 and 3.50×10-6 respectively; for APC 89.42, and 2.34×10-6 respectively; for PVC 93.28 and 3.06×10-6, respectively; for LBBB 93.77 and 2.74×10-6, respectively; for RBBB 92.83 and 3.52×10-6 respectively. Segment specific modelling approach provides better reconstruction performance in comparison with the few published works using Gaussian and Fourier model.","PeriodicalId":193814,"journal":{"name":"2020 IEEE Applied Signal Processing Conference (ASPCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Segment Specific Modeling of Electrocardiogram for Improved Reconstruction Error\",\"authors\":\"A. Mitra, P. Kundu, Rajarshi Gupta\",\"doi\":\"10.1109/ASPCON49795.2020.9276731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocardiogram (ECG) modeling is useful for abnormality detection and data compression. The common research problem in modeling is retaining pathological information using minimum number of model coefficients. In this paper, a new modeling technique for different wave segments of ECG signal, viz., baseline to P-onset, P wave, P-offset to Q, QRS complex, S to T-onset, T wave and T-offset to next baseline is presented. The processing steps included preprocessing, R-peak detection, beat segmentation and waveform partitioning, followed by modeling of individual partitions. For P, QRS and T wave, Gaussian model was adopted and for other segments, Fourier model was adopted to minimize reconstruction error. For testing of the proposed model, normal sinus rhythm (NSR) and myocardial infarction (MI) data records of PTB Diagnostic ECG database (ptbdb) and atrial premature (APC), premature ventricular contraction (PVC), left bundle branch block (LBBB) and right bundle branch block (RBBB) data records of MIT-BIH arrhythmia database (mitdb) under PhysioNet were used. The average SNR, and MSE using proposed method for ptbdb NSR was 86.33, and 4.41×10-6, respectively; for AMI 96.18, and 3.70×10-6 respectively; for IMI 80.86, and 1.36×10-6 respectively; for mitdb NSR 90.94 and 3.50×10-6 respectively; for APC 89.42, and 2.34×10-6 respectively; for PVC 93.28 and 3.06×10-6, respectively; for LBBB 93.77 and 2.74×10-6, respectively; for RBBB 92.83 and 3.52×10-6 respectively. Segment specific modelling approach provides better reconstruction performance in comparison with the few published works using Gaussian and Fourier model.\",\"PeriodicalId\":193814,\"journal\":{\"name\":\"2020 IEEE Applied Signal Processing Conference (ASPCON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Applied Signal Processing Conference (ASPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPCON49795.2020.9276731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Applied Signal Processing Conference (ASPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPCON49795.2020.9276731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

心电图(ECG)建模对异常检测和数据压缩非常有用。利用最小数量的模型系数来保留病理信息是建模中常见的研究问题。本文提出了一种新的心电信号不同波段的建模技术,即基线到P-onset、P波、P-offset到Q、QRS复合体、S到T-onset、T波和T-offset到下一个基线。处理步骤包括预处理、r峰检测、节拍分割和波形分割,然后对各个分割进行建模。对于P波、QRS波和T波,采用高斯模型,其他部分采用傅立叶模型,使重建误差最小化。为了验证所提出的模型,使用了PTB诊断心电图数据库(ptbdb)的正常窦性心律(NSR)和心肌梗死(MI)数据记录,以及PhysioNet下MIT-BIH心律失常数据库(mitdb)的房性早搏(APC)、室性早搏(PVC)、左束支传导阻滞(LBBB)和右束支传导阻滞(RBBB)数据记录。采用该方法对ptbdb的平均信噪比为86.33,均方根误差为4.41×10-6;AMI 96.18, 3.70×10-6;IMI分别为80.86和1.36×10-6;mitdb的NSR分别为90.94和3.50×10-6;APC 89.42, 2.34×10-6;PVC分别为93.28和3.06×10-6;LBBB分别为93.77和2.74×10-6;分别为RBBB 92.83和3.52×10-6与少数已发表的使用高斯和傅立叶模型的方法相比,分段特定建模方法提供了更好的重建性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segment Specific Modeling of Electrocardiogram for Improved Reconstruction Error
Electrocardiogram (ECG) modeling is useful for abnormality detection and data compression. The common research problem in modeling is retaining pathological information using minimum number of model coefficients. In this paper, a new modeling technique for different wave segments of ECG signal, viz., baseline to P-onset, P wave, P-offset to Q, QRS complex, S to T-onset, T wave and T-offset to next baseline is presented. The processing steps included preprocessing, R-peak detection, beat segmentation and waveform partitioning, followed by modeling of individual partitions. For P, QRS and T wave, Gaussian model was adopted and for other segments, Fourier model was adopted to minimize reconstruction error. For testing of the proposed model, normal sinus rhythm (NSR) and myocardial infarction (MI) data records of PTB Diagnostic ECG database (ptbdb) and atrial premature (APC), premature ventricular contraction (PVC), left bundle branch block (LBBB) and right bundle branch block (RBBB) data records of MIT-BIH arrhythmia database (mitdb) under PhysioNet were used. The average SNR, and MSE using proposed method for ptbdb NSR was 86.33, and 4.41×10-6, respectively; for AMI 96.18, and 3.70×10-6 respectively; for IMI 80.86, and 1.36×10-6 respectively; for mitdb NSR 90.94 and 3.50×10-6 respectively; for APC 89.42, and 2.34×10-6 respectively; for PVC 93.28 and 3.06×10-6, respectively; for LBBB 93.77 and 2.74×10-6, respectively; for RBBB 92.83 and 3.52×10-6 respectively. Segment specific modelling approach provides better reconstruction performance in comparison with the few published works using Gaussian and Fourier model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信