{"title":"对美国爱德华兹-巴尔科斯断裂带含水层地下水补给的气候弹性评估","authors":"Changbing Yang, F. Paul Bertetti","doi":"10.1111/1752-1688.13142","DOIUrl":null,"url":null,"abstract":"<p>This study presents a comprehensive analysis of the characteristics of precipitation, temperature, and groundwater recharge in the recharge zone of the nine basins of the San Antonio segment of the Edwards Balcones Fault Zone Aquifer, which is one of the major groundwater systems in the United States and serves as primary water sources for approximately 1.7 million people in south-central Texas. Datasets of monthly precipitation and average temperature (1895–2019) and groundwater recharge (1934–2019) are used to examine the decadal variability in precipitation, temperature, and groundwater recharge on the annual scale with a normalized 20-year moving average of variance. Climate elasticity (precipitation and potential evapotranspiration) of groundwater recharge is estimated to evaluate impacts of climate change on groundwater recharge. The results of this study show that precipitation and temperature variability exhibit decadal cyclic patterns. Elasticity analysis of groundwater recharge indicates that a 1% change in annual precipitation may result in 2%, with a likely range of 0.15%–2.8%, change in groundwater recharge, and a 1% change in annual potential evapotranspiration may lead to −3.3% change in groundwater recharge with a likely range of −8.9% to 4% in the study area. This study suggests that climate elasticity of groundwater recharge may provide an alternative means for evaluating climate impacts on groundwater recharge to an aquifer.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13142","citationCount":"0","resultStr":"{\"title\":\"Climate elasticity assessment on groundwater recharge to the Edwards Balcones Fault Zone Aquifer, United States\",\"authors\":\"Changbing Yang, F. Paul Bertetti\",\"doi\":\"10.1111/1752-1688.13142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a comprehensive analysis of the characteristics of precipitation, temperature, and groundwater recharge in the recharge zone of the nine basins of the San Antonio segment of the Edwards Balcones Fault Zone Aquifer, which is one of the major groundwater systems in the United States and serves as primary water sources for approximately 1.7 million people in south-central Texas. Datasets of monthly precipitation and average temperature (1895–2019) and groundwater recharge (1934–2019) are used to examine the decadal variability in precipitation, temperature, and groundwater recharge on the annual scale with a normalized 20-year moving average of variance. Climate elasticity (precipitation and potential evapotranspiration) of groundwater recharge is estimated to evaluate impacts of climate change on groundwater recharge. The results of this study show that precipitation and temperature variability exhibit decadal cyclic patterns. Elasticity analysis of groundwater recharge indicates that a 1% change in annual precipitation may result in 2%, with a likely range of 0.15%–2.8%, change in groundwater recharge, and a 1% change in annual potential evapotranspiration may lead to −3.3% change in groundwater recharge with a likely range of −8.9% to 4% in the study area. This study suggests that climate elasticity of groundwater recharge may provide an alternative means for evaluating climate impacts on groundwater recharge to an aquifer.</p>\",\"PeriodicalId\":17234,\"journal\":{\"name\":\"Journal of The American Water Resources Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13142\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Water Resources Association\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13142\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13142","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Climate elasticity assessment on groundwater recharge to the Edwards Balcones Fault Zone Aquifer, United States
This study presents a comprehensive analysis of the characteristics of precipitation, temperature, and groundwater recharge in the recharge zone of the nine basins of the San Antonio segment of the Edwards Balcones Fault Zone Aquifer, which is one of the major groundwater systems in the United States and serves as primary water sources for approximately 1.7 million people in south-central Texas. Datasets of monthly precipitation and average temperature (1895–2019) and groundwater recharge (1934–2019) are used to examine the decadal variability in precipitation, temperature, and groundwater recharge on the annual scale with a normalized 20-year moving average of variance. Climate elasticity (precipitation and potential evapotranspiration) of groundwater recharge is estimated to evaluate impacts of climate change on groundwater recharge. The results of this study show that precipitation and temperature variability exhibit decadal cyclic patterns. Elasticity analysis of groundwater recharge indicates that a 1% change in annual precipitation may result in 2%, with a likely range of 0.15%–2.8%, change in groundwater recharge, and a 1% change in annual potential evapotranspiration may lead to −3.3% change in groundwater recharge with a likely range of −8.9% to 4% in the study area. This study suggests that climate elasticity of groundwater recharge may provide an alternative means for evaluating climate impacts on groundwater recharge to an aquifer.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.