基于神经网络的可再生能源预测支持系统

O. Dragomir, Florin Dragomir
{"title":"基于神经网络的可再生能源预测支持系统","authors":"O. Dragomir, Florin Dragomir","doi":"10.1109/AQTR.2014.6857913","DOIUrl":null,"url":null,"abstract":"This paper proposes to prosumers a NN based decision support application for selecting an optimal forecasting tool for energy produced from renewable sources. The exploration and the assessment of criteria used for choosing a forecasting tool are made in the neural network (NN) framework. Firstly, the criteria for selecting the best forecasting tool are addressed. Secondly, the identified criteria are integrated in an object oriented software application, built using Matlab-Guide User Interface. In order to underline the effects of the users' decision making, in the third part, the forecasting performances of feed forward neural networks (FF-NN) are tested and evaluated.","PeriodicalId":297141,"journal":{"name":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NN based support system for renewable energy forecasting\",\"authors\":\"O. Dragomir, Florin Dragomir\",\"doi\":\"10.1109/AQTR.2014.6857913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes to prosumers a NN based decision support application for selecting an optimal forecasting tool for energy produced from renewable sources. The exploration and the assessment of criteria used for choosing a forecasting tool are made in the neural network (NN) framework. Firstly, the criteria for selecting the best forecasting tool are addressed. Secondly, the identified criteria are integrated in an object oriented software application, built using Matlab-Guide User Interface. In order to underline the effects of the users' decision making, in the third part, the forecasting performances of feed forward neural networks (FF-NN) are tested and evaluated.\",\"PeriodicalId\":297141,\"journal\":{\"name\":\"2014 IEEE International Conference on Automation, Quality and Testing, Robotics\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Automation, Quality and Testing, Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AQTR.2014.6857913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2014.6857913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于神经网络的决策支持应用,用于选择可再生能源生产的最优预测工具。在神经网络框架下对选择预测工具的标准进行了探索和评估。首先,讨论了选择最佳预测工具的标准。其次,将识别的标准集成到一个面向对象的软件应用程序中,使用Matlab-Guide用户界面构建。为了强调用户决策的影响,第三部分对前馈神经网络(FF-NN)的预测性能进行了测试和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NN based support system for renewable energy forecasting
This paper proposes to prosumers a NN based decision support application for selecting an optimal forecasting tool for energy produced from renewable sources. The exploration and the assessment of criteria used for choosing a forecasting tool are made in the neural network (NN) framework. Firstly, the criteria for selecting the best forecasting tool are addressed. Secondly, the identified criteria are integrated in an object oriented software application, built using Matlab-Guide User Interface. In order to underline the effects of the users' decision making, in the third part, the forecasting performances of feed forward neural networks (FF-NN) are tested and evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信