P. López, M. Aboy, I. Muñoz, I. Santos, L. Marqués, C. Couso, M. Ullán, L. Pelaz
{"title":"在恶劣辐射环境下硅器件中的离子降解:损伤-掺杂相互作用的建模","authors":"P. López, M. Aboy, I. Muñoz, I. Santos, L. Marqués, C. Couso, M. Ullán, L. Pelaz","doi":"10.1109/CDE.2018.8596953","DOIUrl":null,"url":null,"abstract":"Electronic devices operating in harsh radiation environments must withstand high radiation levels with minimal performance degradation. Recent experiments on the radiation hardness of a new vertical p-type JFET power switch have shown a significant reduction of forward drain current under non-ionizing conditions. In this work, atomistic simulations are used to study the impact of irradiation-induced displacement damage on forward characteristics. Damage models have been updated to produce a better description of damage-dopant interactions at RT. Our results show that excess self-interstitials produced by irradiation deactivate a significant amount of B atoms, thus reducing the effective dopant concentration.","PeriodicalId":361044,"journal":{"name":"2018 Spanish Conference on Electron Devices (CDE)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ION Degradation in Si Devices in Harsh Radiation Environments: Modeling of Damage-Dopant Interactions\",\"authors\":\"P. López, M. Aboy, I. Muñoz, I. Santos, L. Marqués, C. Couso, M. Ullán, L. Pelaz\",\"doi\":\"10.1109/CDE.2018.8596953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic devices operating in harsh radiation environments must withstand high radiation levels with minimal performance degradation. Recent experiments on the radiation hardness of a new vertical p-type JFET power switch have shown a significant reduction of forward drain current under non-ionizing conditions. In this work, atomistic simulations are used to study the impact of irradiation-induced displacement damage on forward characteristics. Damage models have been updated to produce a better description of damage-dopant interactions at RT. Our results show that excess self-interstitials produced by irradiation deactivate a significant amount of B atoms, thus reducing the effective dopant concentration.\",\"PeriodicalId\":361044,\"journal\":{\"name\":\"2018 Spanish Conference on Electron Devices (CDE)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Spanish Conference on Electron Devices (CDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDE.2018.8596953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Spanish Conference on Electron Devices (CDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDE.2018.8596953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ION Degradation in Si Devices in Harsh Radiation Environments: Modeling of Damage-Dopant Interactions
Electronic devices operating in harsh radiation environments must withstand high radiation levels with minimal performance degradation. Recent experiments on the radiation hardness of a new vertical p-type JFET power switch have shown a significant reduction of forward drain current under non-ionizing conditions. In this work, atomistic simulations are used to study the impact of irradiation-induced displacement damage on forward characteristics. Damage models have been updated to produce a better description of damage-dopant interactions at RT. Our results show that excess self-interstitials produced by irradiation deactivate a significant amount of B atoms, thus reducing the effective dopant concentration.