频域时间序列分析

R. Pintelon, J. Schoukens
{"title":"频域时间序列分析","authors":"R. Pintelon, J. Schoukens","doi":"10.1109/IMTC.1997.604010","DOIUrl":null,"url":null,"abstract":"This paper presents a parametric frequency domain identification algorithm for autoregressive moving average (ARMA) processes that does not suffer from spectral leakage errors. It is based on an extended transfer function model that takes into account the begin and end effect of the finite data record. The relationship with the one step ahead prediction error method is established. The advantages of the proposed method are easy prefiltering and leakage free spectral representation of the raw data.","PeriodicalId":124893,"journal":{"name":"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Time series analysis in the frequency domain\",\"authors\":\"R. Pintelon, J. Schoukens\",\"doi\":\"10.1109/IMTC.1997.604010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a parametric frequency domain identification algorithm for autoregressive moving average (ARMA) processes that does not suffer from spectral leakage errors. It is based on an extended transfer function model that takes into account the begin and end effect of the finite data record. The relationship with the one step ahead prediction error method is established. The advantages of the proposed method are easy prefiltering and leakage free spectral representation of the raw data.\",\"PeriodicalId\":124893,\"journal\":{\"name\":\"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMTC.1997.604010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.1997.604010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

提出了一种不存在谱泄漏误差的自回归移动平均(ARMA)过程参数频域识别算法。它基于一个扩展的传递函数模型,该模型考虑了有限数据记录的开始和结束效应。建立了与超前一步预测误差法的关系。该方法的优点是易于预滤波和原始数据的无泄漏谱表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time series analysis in the frequency domain
This paper presents a parametric frequency domain identification algorithm for autoregressive moving average (ARMA) processes that does not suffer from spectral leakage errors. It is based on an extended transfer function model that takes into account the begin and end effect of the finite data record. The relationship with the one step ahead prediction error method is established. The advantages of the proposed method are easy prefiltering and leakage free spectral representation of the raw data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信