部分遮阳下光伏组件采用多堆叠降压-升压转换器的无电流传感器单开关电压均衡器

M. Uno, A. Kukita
{"title":"部分遮阳下光伏组件采用多堆叠降压-升压转换器的无电流传感器单开关电压均衡器","authors":"M. Uno, A. Kukita","doi":"10.1109/ICPE.2015.7167852","DOIUrl":null,"url":null,"abstract":"Differential power processing converters or voltage equalizers have been proposed and used for photovoltaic (PV) string comprising multiple modules/substrings connected in series in order to preclude negative influences of partial shading. The single-switch voltage equalizer using multi-stacked buck-boost converters can significantly reduce the necessary switch count compared to that of conventional topologies, achieving simplified circuitry. However, multiple current sensors are necessary for this single-switch equalizer to effectively perform equalization. In this paper, a current sensorless equalization technique, ΔV-controlled equalization, is presented. An equalization strategy using the ΔV-controlled equalization is explained and discussed on the basis of comparison with other equalization strategies. Experimental equalization tests emulating partial-shading conditions were performed using the single-switch equalizer employing the ΔV-controlled equalization. Negative impacts of partial-shading were successfully precluded, demonstrating the efficacy of the proposed ΔV-controlled equalization strategy.","PeriodicalId":160988,"journal":{"name":"2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Current sensorless single-switch voltage equalizer using multi-stacked buck-boost converters for photovoltaic modules under partial shading\",\"authors\":\"M. Uno, A. Kukita\",\"doi\":\"10.1109/ICPE.2015.7167852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential power processing converters or voltage equalizers have been proposed and used for photovoltaic (PV) string comprising multiple modules/substrings connected in series in order to preclude negative influences of partial shading. The single-switch voltage equalizer using multi-stacked buck-boost converters can significantly reduce the necessary switch count compared to that of conventional topologies, achieving simplified circuitry. However, multiple current sensors are necessary for this single-switch equalizer to effectively perform equalization. In this paper, a current sensorless equalization technique, ΔV-controlled equalization, is presented. An equalization strategy using the ΔV-controlled equalization is explained and discussed on the basis of comparison with other equalization strategies. Experimental equalization tests emulating partial-shading conditions were performed using the single-switch equalizer employing the ΔV-controlled equalization. Negative impacts of partial-shading were successfully precluded, demonstrating the efficacy of the proposed ΔV-controlled equalization strategy.\",\"PeriodicalId\":160988,\"journal\":{\"name\":\"2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPE.2015.7167852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPE.2015.7167852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

差分功率处理转换器或电压均衡器已被提出并用于由串联的多个模块/子串组成的光伏(PV)串,以防止部分遮阳的负面影响。与传统拓扑结构相比,采用多堆叠降压-升压转换器的单开关电压均衡器可以显着减少必要的开关计数,实现简化电路。然而,这种单开关均衡器需要多个电流传感器才能有效地进行均衡。本文提出了一种无电流传感器均衡技术ΔV-controlled均衡。在与其他均衡策略比较的基础上,对使用ΔV-controlled均衡的均衡策略进行了说明和讨论。采用ΔV-controlled均衡的单开关均衡器进行了模拟部分遮阳条件的实验均衡测试。成功地排除了部分遮阳的负面影响,证明了所提出的ΔV-controlled均衡策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current sensorless single-switch voltage equalizer using multi-stacked buck-boost converters for photovoltaic modules under partial shading
Differential power processing converters or voltage equalizers have been proposed and used for photovoltaic (PV) string comprising multiple modules/substrings connected in series in order to preclude negative influences of partial shading. The single-switch voltage equalizer using multi-stacked buck-boost converters can significantly reduce the necessary switch count compared to that of conventional topologies, achieving simplified circuitry. However, multiple current sensors are necessary for this single-switch equalizer to effectively perform equalization. In this paper, a current sensorless equalization technique, ΔV-controlled equalization, is presented. An equalization strategy using the ΔV-controlled equalization is explained and discussed on the basis of comparison with other equalization strategies. Experimental equalization tests emulating partial-shading conditions were performed using the single-switch equalizer employing the ΔV-controlled equalization. Negative impacts of partial-shading were successfully precluded, demonstrating the efficacy of the proposed ΔV-controlled equalization strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信