考虑生物特征的人体身份识别模型

Muna Abdul Hussain Radhi
{"title":"考虑生物特征的人体身份识别模型","authors":"Muna Abdul Hussain Radhi","doi":"10.37899/journallamultiapp.v3i4.692","DOIUrl":null,"url":null,"abstract":"In the medical field, brain classification is an effective technique for identifying a person through his brain print based on the hidden biometrics of high specificity included in the magnetic resonance images(MRI) of the brain, as this privacy strongly contributes to the issue of verification and identification of the person. In this paper, the brain print is extracted from the MRI obtained from 50 healthy people, which were passed through several pre-processing techniques in order to be used in the classification stage through convolutional neural network model, among those pre-classification stages, data collection after extracting the influential features for each image, which was based on linear discrimination analysis (LDA). The experimental results showed the importance of using LDA for feature extraction and adoption as input for K-NN and CNN classifiers. The classifiers proved successful in the classification if the features extracted with the help of LDA were adopted. Where CNN had the ability to classify with an accuracy of 99%, 82% for K-NN. The final stage in identifying a person through a brain fingerprint relied mainly on the model's success in classifying and predicting the remaining data in the testing stage.","PeriodicalId":272596,"journal":{"name":"Journal La Multiapp","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Identification Model Considering Biometrics Features\",\"authors\":\"Muna Abdul Hussain Radhi\",\"doi\":\"10.37899/journallamultiapp.v3i4.692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the medical field, brain classification is an effective technique for identifying a person through his brain print based on the hidden biometrics of high specificity included in the magnetic resonance images(MRI) of the brain, as this privacy strongly contributes to the issue of verification and identification of the person. In this paper, the brain print is extracted from the MRI obtained from 50 healthy people, which were passed through several pre-processing techniques in order to be used in the classification stage through convolutional neural network model, among those pre-classification stages, data collection after extracting the influential features for each image, which was based on linear discrimination analysis (LDA). The experimental results showed the importance of using LDA for feature extraction and adoption as input for K-NN and CNN classifiers. The classifiers proved successful in the classification if the features extracted with the help of LDA were adopted. Where CNN had the ability to classify with an accuracy of 99%, 82% for K-NN. The final stage in identifying a person through a brain fingerprint relied mainly on the model's success in classifying and predicting the remaining data in the testing stage.\",\"PeriodicalId\":272596,\"journal\":{\"name\":\"Journal La Multiapp\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal La Multiapp\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37899/journallamultiapp.v3i4.692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal La Multiapp","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37899/journallamultiapp.v3i4.692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在医学领域,脑分类是一种有效的技术,通过脑指纹识别一个人,该技术基于大脑磁共振图像(MRI)中包含的高特异性隐藏生物特征,因为这种隐私性极大地促进了对人的验证和识别问题。本文从50名健康人的MRI图像中提取脑印,通过卷积神经网络模型进行预处理,用于分类阶段,在预分类阶段中,提取每张图像的影响特征后,基于线性判别分析(LDA)进行数据采集。实验结果表明,使用LDA进行特征提取,并将其作为K-NN和CNN分类器的输入的重要性。如果采用LDA提取的特征,分类器的分类效果很好。CNN的分类准确率为99%,K-NN的准确率为82%。通过大脑指纹识别一个人的最后阶段主要依赖于模型在测试阶段对剩余数据的分类和预测方面的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Identification Model Considering Biometrics Features
In the medical field, brain classification is an effective technique for identifying a person through his brain print based on the hidden biometrics of high specificity included in the magnetic resonance images(MRI) of the brain, as this privacy strongly contributes to the issue of verification and identification of the person. In this paper, the brain print is extracted from the MRI obtained from 50 healthy people, which were passed through several pre-processing techniques in order to be used in the classification stage through convolutional neural network model, among those pre-classification stages, data collection after extracting the influential features for each image, which was based on linear discrimination analysis (LDA). The experimental results showed the importance of using LDA for feature extraction and adoption as input for K-NN and CNN classifiers. The classifiers proved successful in the classification if the features extracted with the help of LDA were adopted. Where CNN had the ability to classify with an accuracy of 99%, 82% for K-NN. The final stage in identifying a person through a brain fingerprint relied mainly on the model's success in classifying and predicting the remaining data in the testing stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信