A. R. Coelho, I. Luís, A. Marques, C. Pessoa, D. Daccak, J. Caleiro, Maria Brito, J. Kullberg, M. M. Silva, M. Simões, F. Reboredo, M. Pessoa, P. Legoinha, M. J. Silva, A. Rodrigues, J. Ramalho, P. Scotti-Campos, J. Semedo, I. Pais, F. Lidon
{"title":"龙葵块茎钙生物强化流程的监测。毕加索使用智能农业技术","authors":"A. R. Coelho, I. Luís, A. Marques, C. Pessoa, D. Daccak, J. Caleiro, Maria Brito, J. Kullberg, M. M. Silva, M. Simões, F. Reboredo, M. Pessoa, P. Legoinha, M. J. Silva, A. Rodrigues, J. Ramalho, P. Scotti-Campos, J. Semedo, I. Pais, F. Lidon","doi":"10.3390/iecag2021-09660","DOIUrl":null,"url":null,"abstract":"Due to the rapid growth of the population worldwide and the need to provide food safety in large crop productions, UAVs (unmanned aerial vehicles) are being used in agriculture to provide valuable data for decision making. Accordingly, through precision agriculture, efficient management of resources, using data obtained by the technologies, is possible. Through remote sensed data collected in a crop region, it is possible to create NDVI (normalized difference vegetation index) maps, which are a powerful tool to detect stresses, namely, in plants. Accordingly, using smart farm technology, this study aimed to assess the impact of Ca biofortification on leaves of Solanum tuberosum L. cv. Picasso. As such, using an experimental production field of potato tubers (GPS coordinates: 39°16′38,816′′ N; 9°15′9128′′ W) as a test system, plants were submitted to a Ca biofortification workflow through foliar spraying with CaCl2 or, alternatively, chelated calcium (Ca-EDTA) at concentrations of 12 and 24 kg·ha−1. A lower average NDVI in Ca-EDTA 12 kg·ha−1 treatment after the fourth foliar application was found, which, through the application of the CieLab scale, correlated with lower L (darker color) and hue parameters, regarding control plants. Additionally, a higher Ca content was quantified in the leaves. The obtained data are discussed, and it is concluded that Ca-EDTA 12 kg·ha−1 triggers lower vigor in Picasso potatoes leaves.","PeriodicalId":400770,"journal":{"name":"Biology and Life Sciences Forum","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monitoring of a Calcium Biofortification Workflow for Tubers of Solanum tuberosum L. cv. Picasso Using Smart Farming Technology\",\"authors\":\"A. R. Coelho, I. Luís, A. Marques, C. Pessoa, D. Daccak, J. Caleiro, Maria Brito, J. Kullberg, M. M. Silva, M. Simões, F. Reboredo, M. Pessoa, P. Legoinha, M. J. Silva, A. Rodrigues, J. Ramalho, P. Scotti-Campos, J. Semedo, I. Pais, F. Lidon\",\"doi\":\"10.3390/iecag2021-09660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the rapid growth of the population worldwide and the need to provide food safety in large crop productions, UAVs (unmanned aerial vehicles) are being used in agriculture to provide valuable data for decision making. Accordingly, through precision agriculture, efficient management of resources, using data obtained by the technologies, is possible. Through remote sensed data collected in a crop region, it is possible to create NDVI (normalized difference vegetation index) maps, which are a powerful tool to detect stresses, namely, in plants. Accordingly, using smart farm technology, this study aimed to assess the impact of Ca biofortification on leaves of Solanum tuberosum L. cv. Picasso. As such, using an experimental production field of potato tubers (GPS coordinates: 39°16′38,816′′ N; 9°15′9128′′ W) as a test system, plants were submitted to a Ca biofortification workflow through foliar spraying with CaCl2 or, alternatively, chelated calcium (Ca-EDTA) at concentrations of 12 and 24 kg·ha−1. A lower average NDVI in Ca-EDTA 12 kg·ha−1 treatment after the fourth foliar application was found, which, through the application of the CieLab scale, correlated with lower L (darker color) and hue parameters, regarding control plants. Additionally, a higher Ca content was quantified in the leaves. The obtained data are discussed, and it is concluded that Ca-EDTA 12 kg·ha−1 triggers lower vigor in Picasso potatoes leaves.\",\"PeriodicalId\":400770,\"journal\":{\"name\":\"Biology and Life Sciences Forum\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology and Life Sciences Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/iecag2021-09660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Life Sciences Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iecag2021-09660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monitoring of a Calcium Biofortification Workflow for Tubers of Solanum tuberosum L. cv. Picasso Using Smart Farming Technology
Due to the rapid growth of the population worldwide and the need to provide food safety in large crop productions, UAVs (unmanned aerial vehicles) are being used in agriculture to provide valuable data for decision making. Accordingly, through precision agriculture, efficient management of resources, using data obtained by the technologies, is possible. Through remote sensed data collected in a crop region, it is possible to create NDVI (normalized difference vegetation index) maps, which are a powerful tool to detect stresses, namely, in plants. Accordingly, using smart farm technology, this study aimed to assess the impact of Ca biofortification on leaves of Solanum tuberosum L. cv. Picasso. As such, using an experimental production field of potato tubers (GPS coordinates: 39°16′38,816′′ N; 9°15′9128′′ W) as a test system, plants were submitted to a Ca biofortification workflow through foliar spraying with CaCl2 or, alternatively, chelated calcium (Ca-EDTA) at concentrations of 12 and 24 kg·ha−1. A lower average NDVI in Ca-EDTA 12 kg·ha−1 treatment after the fourth foliar application was found, which, through the application of the CieLab scale, correlated with lower L (darker color) and hue parameters, regarding control plants. Additionally, a higher Ca content was quantified in the leaves. The obtained data are discussed, and it is concluded that Ca-EDTA 12 kg·ha−1 triggers lower vigor in Picasso potatoes leaves.