{"title":"基于二元决策图的同步序列精确计算","authors":"C. Pixley, Seh-Woong Jeong, G. Hachtel","doi":"10.1109/DAC.1992.227811","DOIUrl":null,"url":null,"abstract":"A synchronization sequence for a synchronous design D is a sequence of primary input vectors which when applied to any initial state of D will drive D to a single state, called a reset state. The authors present efficient methods based upon the universal alignment theorem and binary decision diagrams to compute a synchronization sequence, to compute a tight lower bound for the length of such a sequence, and to check that an initial state given in the specification is a reset state. It was shown in the experiments that the proposed method can handle fairly large circuits and the length of the actual synchronization sequence computed is quite close to the lower bound.<<ETX>>","PeriodicalId":162648,"journal":{"name":"[1992] Proceedings 29th ACM/IEEE Design Automation Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Exact calculation of synchronization sequences based on binary decision diagrams\",\"authors\":\"C. Pixley, Seh-Woong Jeong, G. Hachtel\",\"doi\":\"10.1109/DAC.1992.227811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A synchronization sequence for a synchronous design D is a sequence of primary input vectors which when applied to any initial state of D will drive D to a single state, called a reset state. The authors present efficient methods based upon the universal alignment theorem and binary decision diagrams to compute a synchronization sequence, to compute a tight lower bound for the length of such a sequence, and to check that an initial state given in the specification is a reset state. It was shown in the experiments that the proposed method can handle fairly large circuits and the length of the actual synchronization sequence computed is quite close to the lower bound.<<ETX>>\",\"PeriodicalId\":162648,\"journal\":{\"name\":\"[1992] Proceedings 29th ACM/IEEE Design Automation Conference\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings 29th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC.1992.227811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings 29th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC.1992.227811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exact calculation of synchronization sequences based on binary decision diagrams
A synchronization sequence for a synchronous design D is a sequence of primary input vectors which when applied to any initial state of D will drive D to a single state, called a reset state. The authors present efficient methods based upon the universal alignment theorem and binary decision diagrams to compute a synchronization sequence, to compute a tight lower bound for the length of such a sequence, and to check that an initial state given in the specification is a reset state. It was shown in the experiments that the proposed method can handle fairly large circuits and the length of the actual synchronization sequence computed is quite close to the lower bound.<>