CEVCLUS:邻近数据的约束证据聚类

Violaine Antoine, B. Quost, M. Masson, T. Denoeux
{"title":"CEVCLUS:邻近数据的约束证据聚类","authors":"Violaine Antoine, B. Quost, M. Masson, T. Denoeux","doi":"10.2991/eusflat.2011.80","DOIUrl":null,"url":null,"abstract":"We present an improved relational clustering method integrating prior information. This new algorithm, entitled CEVCLUS, is based on two concepts: evidential clustering and constraint-based clustering. Evidential clustering uses the DempsterShafer theory to assign a mass function to each object. It provides a credal partition, which subsumes the notions of crisp, fuzzy and possibilistic partitions. Constraint-based clustering consists in taking advantage of prior information. Such background knowledge is integrated as an additional term in the cost function. Experiments conducted on synthetic and real data demonstrate the interest of the method, even for unbalanced datasets or non-spherical classes.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CEVCLUS: Constrained evidential clustering of proximity data\",\"authors\":\"Violaine Antoine, B. Quost, M. Masson, T. Denoeux\",\"doi\":\"10.2991/eusflat.2011.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an improved relational clustering method integrating prior information. This new algorithm, entitled CEVCLUS, is based on two concepts: evidential clustering and constraint-based clustering. Evidential clustering uses the DempsterShafer theory to assign a mass function to each object. It provides a credal partition, which subsumes the notions of crisp, fuzzy and possibilistic partitions. Constraint-based clustering consists in taking advantage of prior information. Such background knowledge is integrated as an additional term in the cost function. Experiments conducted on synthetic and real data demonstrate the interest of the method, even for unbalanced datasets or non-spherical classes.\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/eusflat.2011.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种改进的基于先验信息的关系聚类方法。这种新的算法被称为CEVCLUS,它基于两个概念:证据聚类和基于约束的聚类。证据聚类使用DempsterShafer理论为每个对象分配质量函数。它提供了一个凭证分区,它包含了清晰分区、模糊分区和可能性分区的概念。基于约束的聚类包括利用先验信息。这些背景知识作为成本函数中的附加项被整合。在合成数据和真实数据上进行的实验表明,即使对于不平衡数据集或非球形类,该方法也是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CEVCLUS: Constrained evidential clustering of proximity data
We present an improved relational clustering method integrating prior information. This new algorithm, entitled CEVCLUS, is based on two concepts: evidential clustering and constraint-based clustering. Evidential clustering uses the DempsterShafer theory to assign a mass function to each object. It provides a credal partition, which subsumes the notions of crisp, fuzzy and possibilistic partitions. Constraint-based clustering consists in taking advantage of prior information. Such background knowledge is integrated as an additional term in the cost function. Experiments conducted on synthetic and real data demonstrate the interest of the method, even for unbalanced datasets or non-spherical classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信