用于持续完整性检查应用的高通量和节能SHA-2 ASIC设计

Asimina Koutra, V. Tenentes
{"title":"用于持续完整性检查应用的高通量和节能SHA-2 ASIC设计","authors":"Asimina Koutra, V. Tenentes","doi":"10.1109/ETS56758.2023.10174095","DOIUrl":null,"url":null,"abstract":"High throughput and energy efficient integrated cryptographic hash primitives are important for the continuous integrity checking and tampering detection in secure access management mechanisms of on-chip instrumentation, such as the IJTAG. However, previous SHA-256 cores focus only on throughput. In this paper, we synthesize with a 32 nm CMOS Technology SHA-256 cores that can be integrated in ASICs, and we present insights on their achieved throughput and energy efficiency. Moreover, we present a novel clock-gated design for reducing dynamic power dissipation of SHA-256 cores; and a novel Multi-Vt design for reducing static power dissipation of SHA-256 cores. The proposed designs can achieve upto 25.9% improvement of the energy efficiency of existing SHA-256 designs, without impacting their performed throughput. To the best of our knowledge, this is the first work that applies low power design techniques on SHA-256 cores.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Throughput and Energy Efficient SHA-2 ASIC Design for Continuous Integrity Checking Applications\",\"authors\":\"Asimina Koutra, V. Tenentes\",\"doi\":\"10.1109/ETS56758.2023.10174095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High throughput and energy efficient integrated cryptographic hash primitives are important for the continuous integrity checking and tampering detection in secure access management mechanisms of on-chip instrumentation, such as the IJTAG. However, previous SHA-256 cores focus only on throughput. In this paper, we synthesize with a 32 nm CMOS Technology SHA-256 cores that can be integrated in ASICs, and we present insights on their achieved throughput and energy efficiency. Moreover, we present a novel clock-gated design for reducing dynamic power dissipation of SHA-256 cores; and a novel Multi-Vt design for reducing static power dissipation of SHA-256 cores. The proposed designs can achieve upto 25.9% improvement of the energy efficiency of existing SHA-256 designs, without impacting their performed throughput. To the best of our knowledge, this is the first work that applies low power design techniques on SHA-256 cores.\",\"PeriodicalId\":211522,\"journal\":{\"name\":\"2023 IEEE European Test Symposium (ETS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS56758.2023.10174095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10174095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高吞吐量和高能效的集成加密哈希原语对于片上仪器(如IJTAG)的安全访问管理机制中的连续完整性检查和篡改检测非常重要。然而,以前的SHA-256内核只关注吞吐量。在本文中,我们合成了可集成在asic中的32 nm CMOS技术SHA-256内核,并对其实现的吞吐量和能效提出了见解。此外,我们提出了一种新的时钟门控设计,以降低SHA-256内核的动态功耗;以及一种新颖的Multi-Vt设计,用于降低SHA-256内核的静态功耗。所提出的设计可以在不影响其执行吞吐量的情况下,将现有SHA-256设计的能源效率提高25.9%。据我们所知,这是第一个在SHA-256内核上应用低功耗设计技术的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Throughput and Energy Efficient SHA-2 ASIC Design for Continuous Integrity Checking Applications
High throughput and energy efficient integrated cryptographic hash primitives are important for the continuous integrity checking and tampering detection in secure access management mechanisms of on-chip instrumentation, such as the IJTAG. However, previous SHA-256 cores focus only on throughput. In this paper, we synthesize with a 32 nm CMOS Technology SHA-256 cores that can be integrated in ASICs, and we present insights on their achieved throughput and energy efficiency. Moreover, we present a novel clock-gated design for reducing dynamic power dissipation of SHA-256 cores; and a novel Multi-Vt design for reducing static power dissipation of SHA-256 cores. The proposed designs can achieve upto 25.9% improvement of the energy efficiency of existing SHA-256 designs, without impacting their performed throughput. To the best of our knowledge, this is the first work that applies low power design techniques on SHA-256 cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信