{"title":"环境经济电力调度问题的多目标差分进化算法","authors":"S. Spea, A. Ela, M. A. Abido","doi":"10.1109/ENERGYCON.2010.5771799","DOIUrl":null,"url":null,"abstract":"This paper presents a multi-objective evolutionary algorithm for environmental\\economic power dispatch (EEPD) problem. The multi-objective evolutionary algorithm based on differential evolution (MODE). In this algorithm, the differential evolution (DE) concept for the single objective optimization is extended to multi-objective optimization. The EEPD problem is formulated as a true nonlinear constrained multi-objective optimization problem with competing objectives. The proposed approach employs a diversity-preserving technique to overcome the premature convergence and search bias problems and produce a well-distributed Pareto-optimal set of non-dominated solutions. A hierarchical clustering algorithm is also imposed to provide the decision maker with a representative and manageable Pareto-optimal set. Moreover, fuzzy set theory is employed to extract the best compromise non-dominated solution. Several optimization runs of the proposed approach have been carried out on IEEE 30-bus test system. The results demonstrate the capabilities of the proposed approach to generate well-distributed Pareto-optimal solutions for the multi-objective EEPD problem and the comparison with the results reported in the literature demonstrates the superiority of the proposed approach and confirms its potential to solve the multi-objective EEPD problem.","PeriodicalId":386008,"journal":{"name":"2010 IEEE International Energy Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi-objective differential evolution algorithm for environmental-economic power dispatch problem\",\"authors\":\"S. Spea, A. Ela, M. A. Abido\",\"doi\":\"10.1109/ENERGYCON.2010.5771799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multi-objective evolutionary algorithm for environmental\\\\economic power dispatch (EEPD) problem. The multi-objective evolutionary algorithm based on differential evolution (MODE). In this algorithm, the differential evolution (DE) concept for the single objective optimization is extended to multi-objective optimization. The EEPD problem is formulated as a true nonlinear constrained multi-objective optimization problem with competing objectives. The proposed approach employs a diversity-preserving technique to overcome the premature convergence and search bias problems and produce a well-distributed Pareto-optimal set of non-dominated solutions. A hierarchical clustering algorithm is also imposed to provide the decision maker with a representative and manageable Pareto-optimal set. Moreover, fuzzy set theory is employed to extract the best compromise non-dominated solution. Several optimization runs of the proposed approach have been carried out on IEEE 30-bus test system. The results demonstrate the capabilities of the proposed approach to generate well-distributed Pareto-optimal solutions for the multi-objective EEPD problem and the comparison with the results reported in the literature demonstrates the superiority of the proposed approach and confirms its potential to solve the multi-objective EEPD problem.\",\"PeriodicalId\":386008,\"journal\":{\"name\":\"2010 IEEE International Energy Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGYCON.2010.5771799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYCON.2010.5771799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-objective differential evolution algorithm for environmental-economic power dispatch problem
This paper presents a multi-objective evolutionary algorithm for environmental\economic power dispatch (EEPD) problem. The multi-objective evolutionary algorithm based on differential evolution (MODE). In this algorithm, the differential evolution (DE) concept for the single objective optimization is extended to multi-objective optimization. The EEPD problem is formulated as a true nonlinear constrained multi-objective optimization problem with competing objectives. The proposed approach employs a diversity-preserving technique to overcome the premature convergence and search bias problems and produce a well-distributed Pareto-optimal set of non-dominated solutions. A hierarchical clustering algorithm is also imposed to provide the decision maker with a representative and manageable Pareto-optimal set. Moreover, fuzzy set theory is employed to extract the best compromise non-dominated solution. Several optimization runs of the proposed approach have been carried out on IEEE 30-bus test system. The results demonstrate the capabilities of the proposed approach to generate well-distributed Pareto-optimal solutions for the multi-objective EEPD problem and the comparison with the results reported in the literature demonstrates the superiority of the proposed approach and confirms its potential to solve the multi-objective EEPD problem.