{"title":"单层石墨烯几何二极管增强的不对称性","authors":"V. Passi, A. Gahoi, M. Lemme","doi":"10.23919/SNW.2017.8242335","DOIUrl":null,"url":null,"abstract":"Monolayer graphene geometric diodes with neck width of 50 nm exhibit record high current asymmetry of 1.48. Diodes with neck angles of 30° and 45° show no significant change in asymmetry, while a reduction in asymmetry has been observed for a diode with a neck angle of 60°, attributed to the reduction in physical asymmetry of the diode structure.","PeriodicalId":424135,"journal":{"name":"2017 Silicon Nanoelectronics Workshop (SNW)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced asymmetry in monolayer graphene geometric diodes\",\"authors\":\"V. Passi, A. Gahoi, M. Lemme\",\"doi\":\"10.23919/SNW.2017.8242335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monolayer graphene geometric diodes with neck width of 50 nm exhibit record high current asymmetry of 1.48. Diodes with neck angles of 30° and 45° show no significant change in asymmetry, while a reduction in asymmetry has been observed for a diode with a neck angle of 60°, attributed to the reduction in physical asymmetry of the diode structure.\",\"PeriodicalId\":424135,\"journal\":{\"name\":\"2017 Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SNW.2017.8242335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2017.8242335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced asymmetry in monolayer graphene geometric diodes
Monolayer graphene geometric diodes with neck width of 50 nm exhibit record high current asymmetry of 1.48. Diodes with neck angles of 30° and 45° show no significant change in asymmetry, while a reduction in asymmetry has been observed for a diode with a neck angle of 60°, attributed to the reduction in physical asymmetry of the diode structure.