{"title":"面向并行操作的FPGA设计","authors":"Minoru Watanabe","doi":"10.1109/ISNE.2015.7132021","DOIUrl":null,"url":null,"abstract":"Recently, studies of acceleration of software operations on a processor have been executed aggressively using Field Programmable Gate Arrays (FPGAs). However, currently available FPGA architecture presents waste under a parallel operation in terms of configuration memory because the same configuration context corresponding to same-function modules must be programmed onto numerous parts of configuration memory. This paper therefore presents a proposal for a parallel-operation-oriented FPGA architecture including a shared common configuration memory. In this research, a parallel-operation-oriented FPGA with four programmable gate arrays sharing a common configuration memory has been designed using a 0.18 μm CMOS process technology. The advantage of the parallel-operation-oriented FPGA is clarified and a design technique to achieve a high-performance parallel-operation-oriented FPGA is discussed.","PeriodicalId":152001,"journal":{"name":"2015 International Symposium on Next-Generation Electronics (ISNE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design of a parallel-operation-oriented FPGA\",\"authors\":\"Minoru Watanabe\",\"doi\":\"10.1109/ISNE.2015.7132021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, studies of acceleration of software operations on a processor have been executed aggressively using Field Programmable Gate Arrays (FPGAs). However, currently available FPGA architecture presents waste under a parallel operation in terms of configuration memory because the same configuration context corresponding to same-function modules must be programmed onto numerous parts of configuration memory. This paper therefore presents a proposal for a parallel-operation-oriented FPGA architecture including a shared common configuration memory. In this research, a parallel-operation-oriented FPGA with four programmable gate arrays sharing a common configuration memory has been designed using a 0.18 μm CMOS process technology. The advantage of the parallel-operation-oriented FPGA is clarified and a design technique to achieve a high-performance parallel-operation-oriented FPGA is discussed.\",\"PeriodicalId\":152001,\"journal\":{\"name\":\"2015 International Symposium on Next-Generation Electronics (ISNE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Next-Generation Electronics (ISNE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNE.2015.7132021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Next-Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2015.7132021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recently, studies of acceleration of software operations on a processor have been executed aggressively using Field Programmable Gate Arrays (FPGAs). However, currently available FPGA architecture presents waste under a parallel operation in terms of configuration memory because the same configuration context corresponding to same-function modules must be programmed onto numerous parts of configuration memory. This paper therefore presents a proposal for a parallel-operation-oriented FPGA architecture including a shared common configuration memory. In this research, a parallel-operation-oriented FPGA with four programmable gate arrays sharing a common configuration memory has been designed using a 0.18 μm CMOS process technology. The advantage of the parallel-operation-oriented FPGA is clarified and a design technique to achieve a high-performance parallel-operation-oriented FPGA is discussed.