一种用超声剪切波和纵波测试残余应力的方法

Q. Pan, Yu Mi, Y. Wei, Yanfei Ren
{"title":"一种用超声剪切波和纵波测试残余应力的方法","authors":"Q. Pan, Yu Mi, Y. Wei, Yanfei Ren","doi":"10.1109/ICMA.2016.7558749","DOIUrl":null,"url":null,"abstract":"Acoustoelasticity provides a significant method for testing the residual stress on the mechanical components. This leads to use the ultrasonic methods to detect residual stress. However, the influence on the detection precision resulted from the uneven thickness of tested components and the inaccurate stress coefficient obtained by the tensile experiment because of the tensile deformation. To address the difficulty in testing the residual stress distribution in the depth direction or the bolt axial direction, this study proposes a new method by combining ultrasonic shear and longitudinal waves based on acoustoelasticity theory. Meanwhile, the formulas also been provided. In addition, by the bolts which are made of austenitic stainless steel (A2-70), low-carbon steel (4.8) and carbon steel (8.8), a comparison of ultrasonic testing methods and tensile testing also has been given. In the end, the results show that the absolute error limit is 20MPa and the relative error of the testing method is less than 25%. Therefore, the new methods can be widely applied in the detection of the residual stress in the depth direction.","PeriodicalId":260197,"journal":{"name":"2016 IEEE International Conference on Mechatronics and Automation","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A method of testing residual stress by ultrasonic shear and longitudinal waves\",\"authors\":\"Q. Pan, Yu Mi, Y. Wei, Yanfei Ren\",\"doi\":\"10.1109/ICMA.2016.7558749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustoelasticity provides a significant method for testing the residual stress on the mechanical components. This leads to use the ultrasonic methods to detect residual stress. However, the influence on the detection precision resulted from the uneven thickness of tested components and the inaccurate stress coefficient obtained by the tensile experiment because of the tensile deformation. To address the difficulty in testing the residual stress distribution in the depth direction or the bolt axial direction, this study proposes a new method by combining ultrasonic shear and longitudinal waves based on acoustoelasticity theory. Meanwhile, the formulas also been provided. In addition, by the bolts which are made of austenitic stainless steel (A2-70), low-carbon steel (4.8) and carbon steel (8.8), a comparison of ultrasonic testing methods and tensile testing also has been given. In the end, the results show that the absolute error limit is 20MPa and the relative error of the testing method is less than 25%. Therefore, the new methods can be widely applied in the detection of the residual stress in the depth direction.\",\"PeriodicalId\":260197,\"journal\":{\"name\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2016.7558749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2016.7558749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

声弹性力学为检测机械部件的残余应力提供了一种重要的方法。这导致使用超声波的方法来检测残余应力。然而,由于被测部件的厚度不均匀,以及拉伸变形导致拉伸实验得到的应力系数不准确,影响了检测精度。针对锚杆深度方向或锚杆轴向残余应力难以检测的问题,提出了基于声弹性理论的超声剪切与纵波相结合的残余应力检测方法。同时给出了计算公式。此外,还对奥氏体不锈钢(A2-70)、低碳钢(4.8)和碳钢(8.8)制造的螺栓进行了超声检测方法和拉伸试验的比较。结果表明,该测试方法的绝对误差极限为20MPa,相对误差小于25%。因此,新方法可广泛应用于深度方向残余应力的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method of testing residual stress by ultrasonic shear and longitudinal waves
Acoustoelasticity provides a significant method for testing the residual stress on the mechanical components. This leads to use the ultrasonic methods to detect residual stress. However, the influence on the detection precision resulted from the uneven thickness of tested components and the inaccurate stress coefficient obtained by the tensile experiment because of the tensile deformation. To address the difficulty in testing the residual stress distribution in the depth direction or the bolt axial direction, this study proposes a new method by combining ultrasonic shear and longitudinal waves based on acoustoelasticity theory. Meanwhile, the formulas also been provided. In addition, by the bolts which are made of austenitic stainless steel (A2-70), low-carbon steel (4.8) and carbon steel (8.8), a comparison of ultrasonic testing methods and tensile testing also has been given. In the end, the results show that the absolute error limit is 20MPa and the relative error of the testing method is less than 25%. Therefore, the new methods can be widely applied in the detection of the residual stress in the depth direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信