{"title":"城市SAR图像的纹理分析与分类","authors":"R. Dekker","doi":"10.1109/DFUA.2003.1220000","DOIUrl":null,"url":null,"abstract":"In SAR image classification texture holds useful information. In a study after the ability of texture to discriminate urban land-cover, a set of measures was investigated. Among them were histogram measures, wavelet energy, fractal dimension, lacunarity and semivariograms. The latter were chosen as an alternative for the well known gray-level cooccurrence family of features. The study was done on the basis of non-parametric separability measures and classification techniques applied to ERS-1 SAR data. The conclusion is that texture improves the classification accuracy. The measures that performed best were mean intensity (actually no texture), variance, weighted-rank fill ratio and semivariogram, but the accuracies vary for different classes. Despite the improvement, the overall classification accuracy indicated that the land-cover information content of ERS-1 leaves to be desired.","PeriodicalId":308988,"journal":{"name":"2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Texture analysis and classification of SAR images of urban areas\",\"authors\":\"R. Dekker\",\"doi\":\"10.1109/DFUA.2003.1220000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In SAR image classification texture holds useful information. In a study after the ability of texture to discriminate urban land-cover, a set of measures was investigated. Among them were histogram measures, wavelet energy, fractal dimension, lacunarity and semivariograms. The latter were chosen as an alternative for the well known gray-level cooccurrence family of features. The study was done on the basis of non-parametric separability measures and classification techniques applied to ERS-1 SAR data. The conclusion is that texture improves the classification accuracy. The measures that performed best were mean intensity (actually no texture), variance, weighted-rank fill ratio and semivariogram, but the accuracies vary for different classes. Despite the improvement, the overall classification accuracy indicated that the land-cover information content of ERS-1 leaves to be desired.\",\"PeriodicalId\":308988,\"journal\":{\"name\":\"2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFUA.2003.1220000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFUA.2003.1220000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Texture analysis and classification of SAR images of urban areas
In SAR image classification texture holds useful information. In a study after the ability of texture to discriminate urban land-cover, a set of measures was investigated. Among them were histogram measures, wavelet energy, fractal dimension, lacunarity and semivariograms. The latter were chosen as an alternative for the well known gray-level cooccurrence family of features. The study was done on the basis of non-parametric separability measures and classification techniques applied to ERS-1 SAR data. The conclusion is that texture improves the classification accuracy. The measures that performed best were mean intensity (actually no texture), variance, weighted-rank fill ratio and semivariogram, but the accuracies vary for different classes. Despite the improvement, the overall classification accuracy indicated that the land-cover information content of ERS-1 leaves to be desired.