{"title":"Android权限释放","authors":"A. Armando, R. Carbone, Gabriele Costa, A. Merlo","doi":"10.1109/CSF.2015.29","DOIUrl":null,"url":null,"abstract":"The Android Security Framework controls the executions of applications through permissions which are statically granted by the user during installation. However, the definition of security policies over permissions is not supported. Security policies must be therefore manually encoded into the application by the developer, which is a dangerous practice and may cause security breaches. We propose an improvement over the Android permission system that supports the specification and enforcement of fine-grained security policies. Enforcement is achieved by reducing policy decision problems to propositional satisfiability and leveraging a state-of-the-art SAT solver. Unlike alternative proposals, our approach does not require changes in the operating system and, therefore, it can be readily deployed in any commercial device.","PeriodicalId":210917,"journal":{"name":"2015 IEEE 28th Computer Security Foundations Symposium","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Android Permissions Unleashed\",\"authors\":\"A. Armando, R. Carbone, Gabriele Costa, A. Merlo\",\"doi\":\"10.1109/CSF.2015.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Android Security Framework controls the executions of applications through permissions which are statically granted by the user during installation. However, the definition of security policies over permissions is not supported. Security policies must be therefore manually encoded into the application by the developer, which is a dangerous practice and may cause security breaches. We propose an improvement over the Android permission system that supports the specification and enforcement of fine-grained security policies. Enforcement is achieved by reducing policy decision problems to propositional satisfiability and leveraging a state-of-the-art SAT solver. Unlike alternative proposals, our approach does not require changes in the operating system and, therefore, it can be readily deployed in any commercial device.\",\"PeriodicalId\":210917,\"journal\":{\"name\":\"2015 IEEE 28th Computer Security Foundations Symposium\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 28th Computer Security Foundations Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2015.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th Computer Security Foundations Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2015.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Android Security Framework controls the executions of applications through permissions which are statically granted by the user during installation. However, the definition of security policies over permissions is not supported. Security policies must be therefore manually encoded into the application by the developer, which is a dangerous practice and may cause security breaches. We propose an improvement over the Android permission system that supports the specification and enforcement of fine-grained security policies. Enforcement is achieved by reducing policy decision problems to propositional satisfiability and leveraging a state-of-the-art SAT solver. Unlike alternative proposals, our approach does not require changes in the operating system and, therefore, it can be readily deployed in any commercial device.