Android权限释放

A. Armando, R. Carbone, Gabriele Costa, A. Merlo
{"title":"Android权限释放","authors":"A. Armando, R. Carbone, Gabriele Costa, A. Merlo","doi":"10.1109/CSF.2015.29","DOIUrl":null,"url":null,"abstract":"The Android Security Framework controls the executions of applications through permissions which are statically granted by the user during installation. However, the definition of security policies over permissions is not supported. Security policies must be therefore manually encoded into the application by the developer, which is a dangerous practice and may cause security breaches. We propose an improvement over the Android permission system that supports the specification and enforcement of fine-grained security policies. Enforcement is achieved by reducing policy decision problems to propositional satisfiability and leveraging a state-of-the-art SAT solver. Unlike alternative proposals, our approach does not require changes in the operating system and, therefore, it can be readily deployed in any commercial device.","PeriodicalId":210917,"journal":{"name":"2015 IEEE 28th Computer Security Foundations Symposium","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Android Permissions Unleashed\",\"authors\":\"A. Armando, R. Carbone, Gabriele Costa, A. Merlo\",\"doi\":\"10.1109/CSF.2015.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Android Security Framework controls the executions of applications through permissions which are statically granted by the user during installation. However, the definition of security policies over permissions is not supported. Security policies must be therefore manually encoded into the application by the developer, which is a dangerous practice and may cause security breaches. We propose an improvement over the Android permission system that supports the specification and enforcement of fine-grained security policies. Enforcement is achieved by reducing policy decision problems to propositional satisfiability and leveraging a state-of-the-art SAT solver. Unlike alternative proposals, our approach does not require changes in the operating system and, therefore, it can be readily deployed in any commercial device.\",\"PeriodicalId\":210917,\"journal\":{\"name\":\"2015 IEEE 28th Computer Security Foundations Symposium\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 28th Computer Security Foundations Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2015.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th Computer Security Foundations Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2015.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

Android安全框架通过用户在安装过程中静态授予的权限来控制应用程序的执行。但是,不支持在权限上定义安全策略。因此,安全策略必须由开发人员手动编码到应用程序中,这是一种危险的做法,可能会导致安全漏洞。我们建议对Android权限系统进行改进,支持细粒度安全策略的规范和执行。执行是通过将政策决策问题减少到命题的可满足性并利用最先进的SAT求解器来实现的。与其他建议不同,我们的方法不需要更改操作系统,因此,它可以很容易地部署在任何商业设备中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Android Permissions Unleashed
The Android Security Framework controls the executions of applications through permissions which are statically granted by the user during installation. However, the definition of security policies over permissions is not supported. Security policies must be therefore manually encoded into the application by the developer, which is a dangerous practice and may cause security breaches. We propose an improvement over the Android permission system that supports the specification and enforcement of fine-grained security policies. Enforcement is achieved by reducing policy decision problems to propositional satisfiability and leveraging a state-of-the-art SAT solver. Unlike alternative proposals, our approach does not require changes in the operating system and, therefore, it can be readily deployed in any commercial device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信