一种高效的多模态情感识别系统:ISAMC

S. Arora, S. Chandel, Sushil Chandra
{"title":"一种高效的多模态情感识别系统:ISAMC","authors":"S. Arora, S. Chandel, Sushil Chandra","doi":"10.1109/IMPETUS.2014.6775870","DOIUrl":null,"url":null,"abstract":"This paper presents a fusion approach called Image and Signal Analysis of Multimedia Content (ISAMC) to provide a fully evolved model for emotion recognition using both external (face) and internal (EEG signals) characteristics for the same emotional phenomenon. Both image analysis and EEG signal analysis is done using a video stimulus and based on wavelet approach for feature extraction. This novel methodology provides cross-validation of EEG and Image results with self-assessment of the participants and encourages multi-classification with the use of two different classifiers. The encouraging experimental results prove that the efficiency of this method is very high and due to its simplicity it can be a promising tool for emotion recognition.","PeriodicalId":153707,"journal":{"name":"2014 International Conference on the IMpact of E-Technology on US (IMPETUS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An efficient multi modal emotion recognition system: ISAMC\",\"authors\":\"S. Arora, S. Chandel, Sushil Chandra\",\"doi\":\"10.1109/IMPETUS.2014.6775870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fusion approach called Image and Signal Analysis of Multimedia Content (ISAMC) to provide a fully evolved model for emotion recognition using both external (face) and internal (EEG signals) characteristics for the same emotional phenomenon. Both image analysis and EEG signal analysis is done using a video stimulus and based on wavelet approach for feature extraction. This novel methodology provides cross-validation of EEG and Image results with self-assessment of the participants and encourages multi-classification with the use of two different classifiers. The encouraging experimental results prove that the efficiency of this method is very high and due to its simplicity it can be a promising tool for emotion recognition.\",\"PeriodicalId\":153707,\"journal\":{\"name\":\"2014 International Conference on the IMpact of E-Technology on US (IMPETUS)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on the IMpact of E-Technology on US (IMPETUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMPETUS.2014.6775870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on the IMpact of E-Technology on US (IMPETUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPETUS.2014.6775870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种称为多媒体内容图像和信号分析(ISAMC)的融合方法,为使用外部(面部)和内部(脑电图信号)特征对同一情绪现象进行情感识别提供了一个完整的进化模型。图像分析和脑电信号分析都是利用视频刺激和基于小波的特征提取方法进行的。这种新颖的方法通过参与者的自我评估对脑电和图像结果进行交叉验证,并鼓励使用两种不同的分类器进行多重分类。实验结果表明,该方法具有较高的效率,且简单易行,是一种很有前途的情感识别工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient multi modal emotion recognition system: ISAMC
This paper presents a fusion approach called Image and Signal Analysis of Multimedia Content (ISAMC) to provide a fully evolved model for emotion recognition using both external (face) and internal (EEG signals) characteristics for the same emotional phenomenon. Both image analysis and EEG signal analysis is done using a video stimulus and based on wavelet approach for feature extraction. This novel methodology provides cross-validation of EEG and Image results with self-assessment of the participants and encourages multi-classification with the use of two different classifiers. The encouraging experimental results prove that the efficiency of this method is very high and due to its simplicity it can be a promising tool for emotion recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信