地震荷载作用下工艺装置的回弹计算:一个实例研究

Bledar Kalemi, A. C. Caputo, F. Paolacci
{"title":"地震荷载作用下工艺装置的回弹计算:一个实例研究","authors":"Bledar Kalemi, A. C. Caputo, F. Paolacci","doi":"10.1115/pvp2019-93311","DOIUrl":null,"url":null,"abstract":"\n Earthquakes causes approximately 8% of total accidents in industrial facilities. Although there are several researches in literature pertaining to industrial resilience, none of them provides a modelling framework to quantify the seismic resilience of process plants. This paper presents a methodology for providing a quantitative measure of resilience and business economic losses for the process plants in case of a seismic event. The two main parameters which have utmost influence on the resilience of a process plant are operational capacity and recovery time, so they must be evaluated in proper way. Plant mapping and components vulnerability are the key modelling parameters of plant operational capacity. Exact recovery step functions are introduced based on General Reconstruction Activity Network (GRAN), considering interdependencies between plant components. In order to illustrate the discussed method, a nitric acid plant is set up as a case study. “PRIAMUS” software is used to generate the most probable damage scenarios, assuming the plant is located in seismic region of South Italy, Sicily. Ultimately, recovery curves are constructed for each damaged scenario, and business economic losses are calculated according to direct cost and business interruption. In short, this methodology provides a good estimation of the most critical components and economic losses of a process plant in case of a seismic event.","PeriodicalId":174920,"journal":{"name":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resilience Calculation of Process Plants Under Seismic Loading: A Case Study\",\"authors\":\"Bledar Kalemi, A. C. Caputo, F. Paolacci\",\"doi\":\"10.1115/pvp2019-93311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Earthquakes causes approximately 8% of total accidents in industrial facilities. Although there are several researches in literature pertaining to industrial resilience, none of them provides a modelling framework to quantify the seismic resilience of process plants. This paper presents a methodology for providing a quantitative measure of resilience and business economic losses for the process plants in case of a seismic event. The two main parameters which have utmost influence on the resilience of a process plant are operational capacity and recovery time, so they must be evaluated in proper way. Plant mapping and components vulnerability are the key modelling parameters of plant operational capacity. Exact recovery step functions are introduced based on General Reconstruction Activity Network (GRAN), considering interdependencies between plant components. In order to illustrate the discussed method, a nitric acid plant is set up as a case study. “PRIAMUS” software is used to generate the most probable damage scenarios, assuming the plant is located in seismic region of South Italy, Sicily. Ultimately, recovery curves are constructed for each damaged scenario, and business economic losses are calculated according to direct cost and business interruption. In short, this methodology provides a good estimation of the most critical components and economic losses of a process plant in case of a seismic event.\",\"PeriodicalId\":174920,\"journal\":{\"name\":\"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-93311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

地震造成的事故约占工业设施事故总数的8%。虽然文献中有一些关于工业弹性的研究,但它们都没有提供一个模型框架来量化工艺工厂的地震弹性。本文提出了一种方法,为在地震事件的情况下提供弹性和商业经济损失的定量测量。对工艺装置的弹性影响最大的两个主要参数是操作能力和恢复时间,因此必须对它们进行适当的评估。植物映射和组件脆弱性是植物运行能力的关键建模参数。基于广义重建活动网络(General Reconstruction Activity Network, GRAN),考虑了植物各组分之间的相互依赖性,引入了精确的恢复步长函数。为了说明所讨论的方法,以某硝酸厂为例进行了研究。假设核电站位于意大利南部西西里岛的地震带,使用“PRIAMUS”软件生成最可能的破坏情景。最后,构建各损坏场景的恢复曲线,并根据直接成本和业务中断计算企业经济损失。简而言之,这种方法可以很好地估计地震事件中工艺工厂的最关键部件和经济损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resilience Calculation of Process Plants Under Seismic Loading: A Case Study
Earthquakes causes approximately 8% of total accidents in industrial facilities. Although there are several researches in literature pertaining to industrial resilience, none of them provides a modelling framework to quantify the seismic resilience of process plants. This paper presents a methodology for providing a quantitative measure of resilience and business economic losses for the process plants in case of a seismic event. The two main parameters which have utmost influence on the resilience of a process plant are operational capacity and recovery time, so they must be evaluated in proper way. Plant mapping and components vulnerability are the key modelling parameters of plant operational capacity. Exact recovery step functions are introduced based on General Reconstruction Activity Network (GRAN), considering interdependencies between plant components. In order to illustrate the discussed method, a nitric acid plant is set up as a case study. “PRIAMUS” software is used to generate the most probable damage scenarios, assuming the plant is located in seismic region of South Italy, Sicily. Ultimately, recovery curves are constructed for each damaged scenario, and business economic losses are calculated according to direct cost and business interruption. In short, this methodology provides a good estimation of the most critical components and economic losses of a process plant in case of a seismic event.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信