考虑NBTI效应的可加性模型的过程公差SRAM单元设计

A. Khosropour, S. Kashani-Gharavi, R. Asadpour, A. Afzali-Kusha
{"title":"考虑NBTI效应的可加性模型的过程公差SRAM单元设计","authors":"A. Khosropour, S. Kashani-Gharavi, R. Asadpour, A. Afzali-Kusha","doi":"10.1109/ACQED.2012.6320474","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a statistical methodology for the design of process variation tolerant yet low-power 6T SRAM cells. In addition to process variations, Negative Bias Temperature Instability (NBTI) has been included in the design methodology such that the time dependence of the failure probability is taken into account. To increase the modeling accuracy of the statistical distributions of different SRAM reliability metrics such as static noise margin (SNM) and Read Current, a modeling scheme based on nonlinear regression is suggested. The design technique, which minimizes the failure probabilities due to the process variations, considers the widths and lengths of the six transistors of the cell as design parameters. The sizes of the transistors are selected such that the area constraint is not violated. Also, to include the static power consumption of the SRAM block in the design methodology, we introduce a method for estimating the SRAM block leakage distribution. To show the efficacy of the technique, the results of applying this methodology for a 45 nm CMOS technology are presented.","PeriodicalId":161858,"journal":{"name":"2012 4th Asia Symposium on Quality Electronic Design (ASQED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Process variation tolerant SRAM cell design using additive model considering NBTI effect\",\"authors\":\"A. Khosropour, S. Kashani-Gharavi, R. Asadpour, A. Afzali-Kusha\",\"doi\":\"10.1109/ACQED.2012.6320474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a statistical methodology for the design of process variation tolerant yet low-power 6T SRAM cells. In addition to process variations, Negative Bias Temperature Instability (NBTI) has been included in the design methodology such that the time dependence of the failure probability is taken into account. To increase the modeling accuracy of the statistical distributions of different SRAM reliability metrics such as static noise margin (SNM) and Read Current, a modeling scheme based on nonlinear regression is suggested. The design technique, which minimizes the failure probabilities due to the process variations, considers the widths and lengths of the six transistors of the cell as design parameters. The sizes of the transistors are selected such that the area constraint is not violated. Also, to include the static power consumption of the SRAM block in the design methodology, we introduce a method for estimating the SRAM block leakage distribution. To show the efficacy of the technique, the results of applying this methodology for a 45 nm CMOS technology are presented.\",\"PeriodicalId\":161858,\"journal\":{\"name\":\"2012 4th Asia Symposium on Quality Electronic Design (ASQED)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 4th Asia Symposium on Quality Electronic Design (ASQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACQED.2012.6320474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th Asia Symposium on Quality Electronic Design (ASQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACQED.2012.6320474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种统计方法来设计工艺变化容忍低功耗6T SRAM单元。除了工艺变化外,负偏置温度不稳定性(NBTI)已被纳入设计方法,以便考虑失效概率的时间依赖性。为了提高SRAM可靠性指标静态噪声裕度(SNM)和读电流统计分布的建模精度,提出了一种基于非线性回归的SRAM可靠性建模方案。该设计技术考虑了电池的六个晶体管的宽度和长度作为设计参数,从而最大限度地减少了由于工艺变化而导致的失效概率。晶体管的尺寸的选择使得面积约束不被违反。此外,为了在设计方法中包括SRAM块的静态功耗,我们引入了一种估计SRAM块泄漏分布的方法。为了证明该技术的有效性,给出了将该方法应用于45纳米CMOS技术的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Process variation tolerant SRAM cell design using additive model considering NBTI effect
In this paper, we propose a statistical methodology for the design of process variation tolerant yet low-power 6T SRAM cells. In addition to process variations, Negative Bias Temperature Instability (NBTI) has been included in the design methodology such that the time dependence of the failure probability is taken into account. To increase the modeling accuracy of the statistical distributions of different SRAM reliability metrics such as static noise margin (SNM) and Read Current, a modeling scheme based on nonlinear regression is suggested. The design technique, which minimizes the failure probabilities due to the process variations, considers the widths and lengths of the six transistors of the cell as design parameters. The sizes of the transistors are selected such that the area constraint is not violated. Also, to include the static power consumption of the SRAM block in the design methodology, we introduce a method for estimating the SRAM block leakage distribution. To show the efficacy of the technique, the results of applying this methodology for a 45 nm CMOS technology are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信