用多值伪kronecker决策图表示多输出开关函数

H. M. H. Babu, Tsutomu Sasao
{"title":"用多值伪kronecker决策图表示多输出开关函数","authors":"H. M. H. Babu, Tsutomu Sasao","doi":"10.1109/ISMVL.2000.848613","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to construct smaller multiple-valued pseudo-Kronecker decision diagrams (MVPKDDs). Our method first generates a 4-valued input 2-valued multiple-output function from a given 2-valued input 2-valued output functions. Then, it constructs a 4-valued decision diagram (4-valued DD) to represent the generated 4-valued input function. Finally, it selects a good expansion among 27 different expansions for each 4-valued node of the 4-valued DD and derive a 4-valued PKDD. We present heuristics to produce compact 4-valued PKDDs. Experimental results using benchmark functions show the efficiency of our method. From experiments, we also conjecture that, for n>1, to represent an n-bit adder (adr n), a 4-valued PKDD, a 4-valued DD (MDD), a 2-valued PKDD, and a shared binary decision diagram (SBDD) require 2n+1, 3n-1, 4n-1, and 9n-7 non-terminal nodes, respectively.","PeriodicalId":334235,"journal":{"name":"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Representations of multiple-output switching functions using multiple-valued pseudo-Kronecker decision diagrams\",\"authors\":\"H. M. H. Babu, Tsutomu Sasao\",\"doi\":\"10.1109/ISMVL.2000.848613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method to construct smaller multiple-valued pseudo-Kronecker decision diagrams (MVPKDDs). Our method first generates a 4-valued input 2-valued multiple-output function from a given 2-valued input 2-valued output functions. Then, it constructs a 4-valued decision diagram (4-valued DD) to represent the generated 4-valued input function. Finally, it selects a good expansion among 27 different expansions for each 4-valued node of the 4-valued DD and derive a 4-valued PKDD. We present heuristics to produce compact 4-valued PKDDs. Experimental results using benchmark functions show the efficiency of our method. From experiments, we also conjecture that, for n>1, to represent an n-bit adder (adr n), a 4-valued PKDD, a 4-valued DD (MDD), a 2-valued PKDD, and a shared binary decision diagram (SBDD) require 2n+1, 3n-1, 4n-1, and 9n-7 non-terminal nodes, respectively.\",\"PeriodicalId\":334235,\"journal\":{\"name\":\"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2000.848613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2000.848613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种构造较小的多值伪kronecker决策图(mvpkdd)的方法。我们的方法首先从一个给定的2值输入2值输出函数生成一个4值输入2值多输出函数。然后,构造一个4值决策图(4-value DD)来表示生成的4值输入函数。最后,对4值DD的每个4值节点从27个不同的展开中选择一个较好的展开,推导出一个4值PKDD。我们提出了产生紧凑的4值pkdd的启发式方法。基于基准函数的实验结果表明了该方法的有效性。从实验中,我们还推测,当n>1时,为了表示n位加法器(adr n), 4值PKDD、4值DD (MDD)、2值PKDD和共享二进制决策图(SBDD)分别需要2n+1、3n-1、4n-1和9n-7个非终端节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representations of multiple-output switching functions using multiple-valued pseudo-Kronecker decision diagrams
In this paper, we propose a method to construct smaller multiple-valued pseudo-Kronecker decision diagrams (MVPKDDs). Our method first generates a 4-valued input 2-valued multiple-output function from a given 2-valued input 2-valued output functions. Then, it constructs a 4-valued decision diagram (4-valued DD) to represent the generated 4-valued input function. Finally, it selects a good expansion among 27 different expansions for each 4-valued node of the 4-valued DD and derive a 4-valued PKDD. We present heuristics to produce compact 4-valued PKDDs. Experimental results using benchmark functions show the efficiency of our method. From experiments, we also conjecture that, for n>1, to represent an n-bit adder (adr n), a 4-valued PKDD, a 4-valued DD (MDD), a 2-valued PKDD, and a shared binary decision diagram (SBDD) require 2n+1, 3n-1, 4n-1, and 9n-7 non-terminal nodes, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信