基于径向基函数的表面重构散射数据约简算法

Xinping Ji, Xiaojun Wu, M. Wang
{"title":"基于径向基函数的表面重构散射数据约简算法","authors":"Xinping Ji, Xiaojun Wu, M. Wang","doi":"10.1109/ICAT.2006.33","DOIUrl":null,"url":null,"abstract":"This paper concerns a method to reduce centers progressively for radial basis function surface reconstruction from scattered point set to decrease the computational complexity, which belongs to the category of data filtering. In the procedure of the algorithm, we use kd tree to reduce the computational complexity and make it practical for large number of points, then use the radial basis function to approximate, the good performance of the proposed filtering scheme is finally shown by some experimental examples","PeriodicalId":133842,"journal":{"name":"16th International Conference on Artificial Reality and Telexistence--Workshops (ICAT'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm of Scattered Data Reduction for Surface Reconstruction using Radial Basis Function\",\"authors\":\"Xinping Ji, Xiaojun Wu, M. Wang\",\"doi\":\"10.1109/ICAT.2006.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns a method to reduce centers progressively for radial basis function surface reconstruction from scattered point set to decrease the computational complexity, which belongs to the category of data filtering. In the procedure of the algorithm, we use kd tree to reduce the computational complexity and make it practical for large number of points, then use the radial basis function to approximate, the good performance of the proposed filtering scheme is finally shown by some experimental examples\",\"PeriodicalId\":133842,\"journal\":{\"name\":\"16th International Conference on Artificial Reality and Telexistence--Workshops (ICAT'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th International Conference on Artificial Reality and Telexistence--Workshops (ICAT'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAT.2006.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th International Conference on Artificial Reality and Telexistence--Workshops (ICAT'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT.2006.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于散点集的径向基函数曲面重构的逐级减少中心的方法,以降低计算复杂度,属于数据滤波的范畴。在算法过程中,我们采用kd树来降低计算复杂度,使其适用于大量的点,然后使用径向基函数进行近似,最后通过一些实验实例证明了所提出的滤波方案的良好性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm of Scattered Data Reduction for Surface Reconstruction using Radial Basis Function
This paper concerns a method to reduce centers progressively for radial basis function surface reconstruction from scattered point set to decrease the computational complexity, which belongs to the category of data filtering. In the procedure of the algorithm, we use kd tree to reduce the computational complexity and make it practical for large number of points, then use the radial basis function to approximate, the good performance of the proposed filtering scheme is finally shown by some experimental examples
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信