成本和功耗/性能优化的20nm SoC技术,适用于先进的移动设备

G. Nallapati, J. Zhu, J. Wang, J. Sheu, K. Cheng, C. Gan, D. Yang, M. Cai, J. Cheng, L. Ge, Y. Chen, R. Bucki, B. Bowers, F. Vang, X. Chen, O. Kwon, S. Yoon, C. C. Wu, P. Chidambaram, M. Cao, J. Fischer, E. Terzioglu, Y. Mii, G. Yeap
{"title":"成本和功耗/性能优化的20nm SoC技术,适用于先进的移动设备","authors":"G. Nallapati, J. Zhu, J. Wang, J. Sheu, K. Cheng, C. Gan, D. Yang, M. Cai, J. Cheng, L. Ge, Y. Chen, R. Bucki, B. Bowers, F. Vang, X. Chen, O. Kwon, S. Yoon, C. C. Wu, P. Chidambaram, M. Cao, J. Fischer, E. Terzioglu, Y. Mii, G. Yeap","doi":"10.1109/VLSIT.2014.6894414","DOIUrl":null,"url":null,"abstract":"A cost competitive 20nm technology node is described that enabled industry-first 20nm cellular modem chip with 2× peak data rates vs 28nm, and 2× carrier aggregation. Process and design enhancements for layout context optimization, and continuous process improvements resulted in 18% boost in circuit performance while simultaneously achieving >30% power reduction. 3 mask local interconnect and 64nm double patterning lower level metals - with yield-friendly single color pitch of 95nm and M1 special constructs with 90nm (=gate pitch) single color pitch for cell abutment - were used for achieving ~2× gate density. Single patterning 80nm pitch metal for routing levels was optimized for both density and performance. Active/passive device and double pattern metal mask count was optimized to reach process should-cost goals. Resulting technology provides cost reduction vs 28 HKMG per close to historical trend, and also cost-competitiveness vs 28 PolySiON. Leveraging of yield learning of this common back-end metallization results in up to 6 month pull-in of 16nm Finfet node yield ramp.","PeriodicalId":105807,"journal":{"name":"2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cost and power/performance optimized 20nm SoC technology for advanced mobile devices\",\"authors\":\"G. Nallapati, J. Zhu, J. Wang, J. Sheu, K. Cheng, C. Gan, D. Yang, M. Cai, J. Cheng, L. Ge, Y. Chen, R. Bucki, B. Bowers, F. Vang, X. Chen, O. Kwon, S. Yoon, C. C. Wu, P. Chidambaram, M. Cao, J. Fischer, E. Terzioglu, Y. Mii, G. Yeap\",\"doi\":\"10.1109/VLSIT.2014.6894414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cost competitive 20nm technology node is described that enabled industry-first 20nm cellular modem chip with 2× peak data rates vs 28nm, and 2× carrier aggregation. Process and design enhancements for layout context optimization, and continuous process improvements resulted in 18% boost in circuit performance while simultaneously achieving >30% power reduction. 3 mask local interconnect and 64nm double patterning lower level metals - with yield-friendly single color pitch of 95nm and M1 special constructs with 90nm (=gate pitch) single color pitch for cell abutment - were used for achieving ~2× gate density. Single patterning 80nm pitch metal for routing levels was optimized for both density and performance. Active/passive device and double pattern metal mask count was optimized to reach process should-cost goals. Resulting technology provides cost reduction vs 28 HKMG per close to historical trend, and also cost-competitiveness vs 28 PolySiON. Leveraging of yield learning of this common back-end metallization results in up to 6 month pull-in of 16nm Finfet node yield ramp.\",\"PeriodicalId\":105807,\"journal\":{\"name\":\"2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2014.6894414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2014.6894414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍了一种具有成本竞争力的20nm技术节点,该节点实现了业界首创的20nm蜂窝调制解调器芯片,与28nm相比具有2倍的峰值数据速率和2倍的载波聚合。优化布局环境的工艺和设计改进以及持续的工艺改进使电路性能提高了18%,同时实现了>30%的功耗降低。3掩膜局部互连和64nm双图案低电平金属-具有产量友好的95nm单色间距和M1特殊结构,具有90nm(=栅极间距)单色间距用于细胞基台-用于实现~2倍栅极密度。单图案80nm螺距金属布线水平优化密度和性能。优化了有源/无源器件和双模金属掩模数量,以达到工艺成本目标。由此产生的技术可以降低成本,而每28港元的成本接近历史趋势,并且与28 PolySiON相比具有成本竞争力。利用这种常见后端金属化的良率学习,可以在长达6个月的时间内实现16nm Finfet节点的良率斜坡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost and power/performance optimized 20nm SoC technology for advanced mobile devices
A cost competitive 20nm technology node is described that enabled industry-first 20nm cellular modem chip with 2× peak data rates vs 28nm, and 2× carrier aggregation. Process and design enhancements for layout context optimization, and continuous process improvements resulted in 18% boost in circuit performance while simultaneously achieving >30% power reduction. 3 mask local interconnect and 64nm double patterning lower level metals - with yield-friendly single color pitch of 95nm and M1 special constructs with 90nm (=gate pitch) single color pitch for cell abutment - were used for achieving ~2× gate density. Single patterning 80nm pitch metal for routing levels was optimized for both density and performance. Active/passive device and double pattern metal mask count was optimized to reach process should-cost goals. Resulting technology provides cost reduction vs 28 HKMG per close to historical trend, and also cost-competitiveness vs 28 PolySiON. Leveraging of yield learning of this common back-end metallization results in up to 6 month pull-in of 16nm Finfet node yield ramp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信