在存在假警报的情况下进行卷积解码

M. Mansour, A. Tewfik
{"title":"在存在假警报的情况下进行卷积解码","authors":"M. Mansour, A. Tewfik","doi":"10.1109/NRSC.2002.1022602","DOIUrl":null,"url":null,"abstract":"We propose a new channel model that is suited for systems with irregular sampling, e.g. selective data embedding in digital media. The channel model accounts for the possible occurrence of false alarms, i.e. extra data bits, in the received sequence. We propose modifications to the common decoding schemes of the convolutional codes namely, the Viterbi and the sequential decoding to compensate for these false alarms. The simulation results establish the effectiveness of the proposed algorithms in detecting false alarms with high rates.","PeriodicalId":231600,"journal":{"name":"Proceedings of the Nineteenth National Radio Science Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional decoding in the presence of false alarms\",\"authors\":\"M. Mansour, A. Tewfik\",\"doi\":\"10.1109/NRSC.2002.1022602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new channel model that is suited for systems with irregular sampling, e.g. selective data embedding in digital media. The channel model accounts for the possible occurrence of false alarms, i.e. extra data bits, in the received sequence. We propose modifications to the common decoding schemes of the convolutional codes namely, the Viterbi and the sequential decoding to compensate for these false alarms. The simulation results establish the effectiveness of the proposed algorithms in detecting false alarms with high rates.\",\"PeriodicalId\":231600,\"journal\":{\"name\":\"Proceedings of the Nineteenth National Radio Science Conference\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Nineteenth National Radio Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.2002.1022602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Nineteenth National Radio Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2002.1022602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的通道模型,适用于不规则采样系统,例如数字媒体中的选择性数据嵌入。通道模型考虑了接收序列中可能出现的假警报,即额外的数据位。我们提出了修改卷积码的常见解码方案,即维特比和顺序解码,以补偿这些假警报。仿真结果验证了所提算法在高检出率的虚警检测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional decoding in the presence of false alarms
We propose a new channel model that is suited for systems with irregular sampling, e.g. selective data embedding in digital media. The channel model accounts for the possible occurrence of false alarms, i.e. extra data bits, in the received sequence. We propose modifications to the common decoding schemes of the convolutional codes namely, the Viterbi and the sequential decoding to compensate for these false alarms. The simulation results establish the effectiveness of the proposed algorithms in detecting false alarms with high rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信