FastPep:用于复杂三维几何形状的快速寄生提取程序

M. Kamon, N. Marques, Jacob K. White
{"title":"FastPep:用于复杂三维几何形状的快速寄生提取程序","authors":"M. Kamon, N. Marques, Jacob K. White","doi":"10.1109/ICCAD.1997.643575","DOIUrl":null,"url":null,"abstract":"In this paper we describe a computationally efficient approach to generating reduced-order models from PEEC-based three-dimensional electromagnetic analysis programs. It is shown that a recycled multipole-accelerated approach applied to recent model order reduction techniques requires nearly two orders of magnitude fewer floating point operations than direct techniques thus allowing the analysis of larger, more complex three-dimensional geometries.","PeriodicalId":187521,"journal":{"name":"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"FastPep: a fast parasitic extraction program for complex three-dimensional geometries\",\"authors\":\"M. Kamon, N. Marques, Jacob K. White\",\"doi\":\"10.1109/ICCAD.1997.643575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a computationally efficient approach to generating reduced-order models from PEEC-based three-dimensional electromagnetic analysis programs. It is shown that a recycled multipole-accelerated approach applied to recent model order reduction techniques requires nearly two orders of magnitude fewer floating point operations than direct techniques thus allowing the analysis of larger, more complex three-dimensional geometries.\",\"PeriodicalId\":187521,\"journal\":{\"name\":\"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1997.643575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1997.643575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

在本文中,我们描述了一种计算效率的方法,从基于peec的三维电磁分析程序生成降阶模型。研究表明,应用于最近模型降阶技术的循环多极加速方法需要的浮点运算比直接技术少近两个数量级,从而允许分析更大、更复杂的三维几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FastPep: a fast parasitic extraction program for complex three-dimensional geometries
In this paper we describe a computationally efficient approach to generating reduced-order models from PEEC-based three-dimensional electromagnetic analysis programs. It is shown that a recycled multipole-accelerated approach applied to recent model order reduction techniques requires nearly two orders of magnitude fewer floating point operations than direct techniques thus allowing the analysis of larger, more complex three-dimensional geometries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信