利用综合评级来提高推荐系统的预测性能

Akhmed Umyarov
{"title":"利用综合评级来提高推荐系统的预测性能","authors":"Akhmed Umyarov","doi":"10.1145/1454008.1454064","DOIUrl":null,"url":null,"abstract":"One of the key problems in recommender systems is accurate estimation of unknown ratings of individual items for individual users in terms of the previously specified ratings and other characteristics of items and users. In this thesis, we investigate a way of improving estimations of individual ratings using externally provided properties of aggregate ratings for groups of items and users, such as an externally specified average rating of action movies provided by graduate students or externally specified standard deviation of ratings for comedy movies.","PeriodicalId":124312,"journal":{"name":"New York University Stern School of Business Research Paper Series","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Leveraging aggregate ratings for improving predictive performance of recommender systems\",\"authors\":\"Akhmed Umyarov\",\"doi\":\"10.1145/1454008.1454064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the key problems in recommender systems is accurate estimation of unknown ratings of individual items for individual users in terms of the previously specified ratings and other characteristics of items and users. In this thesis, we investigate a way of improving estimations of individual ratings using externally provided properties of aggregate ratings for groups of items and users, such as an externally specified average rating of action movies provided by graduate students or externally specified standard deviation of ratings for comedy movies.\",\"PeriodicalId\":124312,\"journal\":{\"name\":\"New York University Stern School of Business Research Paper Series\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New York University Stern School of Business Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1454008.1454064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New York University Stern School of Business Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1454008.1454064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

推荐系统的关键问题之一是根据先前指定的评分以及物品和用户的其他特征,准确估计单个用户对单个物品的未知评分。在本文中,我们研究了一种利用外部提供的项目和用户组的总评级属性来改进个人评级估计的方法,例如研究生提供的外部指定的动作片平均评级或外部指定的喜剧电影评级标准偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging aggregate ratings for improving predictive performance of recommender systems
One of the key problems in recommender systems is accurate estimation of unknown ratings of individual items for individual users in terms of the previously specified ratings and other characteristics of items and users. In this thesis, we investigate a way of improving estimations of individual ratings using externally provided properties of aggregate ratings for groups of items and users, such as an externally specified average rating of action movies provided by graduate students or externally specified standard deviation of ratings for comedy movies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信