点对点迭代学习控制算法的收敛性和鲁棒性

T. V. Dinh, C. Freeman, P. Lewin, Y. Tan
{"title":"点对点迭代学习控制算法的收敛性和鲁棒性","authors":"T. V. Dinh, C. Freeman, P. Lewin, Y. Tan","doi":"10.1109/CDC.2012.6426908","DOIUrl":null,"url":null,"abstract":"Iterative learning control (ILC) is a methodology applied to systems which repeatedly perform a tracking task defined over a fixed, finite time duration. In this approach the output is specified at all points in this interval, however there exists a broad class of applications in which the output is only important at a subset of time instants. An ILC update law is therefore derived which enables tracking at any subset of time points, with performance shown to increase as time points are removed from the tracking objective. Experimental results using a multi-variable test facility confirm that point-to-point ILC leads to superior performance than can be obtained using standard ILC and an a priori specified reference.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Convergence and robustness of a point-to-point iterative learning control algorithm\",\"authors\":\"T. V. Dinh, C. Freeman, P. Lewin, Y. Tan\",\"doi\":\"10.1109/CDC.2012.6426908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iterative learning control (ILC) is a methodology applied to systems which repeatedly perform a tracking task defined over a fixed, finite time duration. In this approach the output is specified at all points in this interval, however there exists a broad class of applications in which the output is only important at a subset of time instants. An ILC update law is therefore derived which enables tracking at any subset of time points, with performance shown to increase as time points are removed from the tracking objective. Experimental results using a multi-variable test facility confirm that point-to-point ILC leads to superior performance than can be obtained using standard ILC and an a priori specified reference.\",\"PeriodicalId\":312426,\"journal\":{\"name\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2012.6426908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6426908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

迭代学习控制(ILC)是一种应用于在固定的有限时间内重复执行跟踪任务的系统的方法。在这种方法中,输出在该间隔内的所有点上指定,但是存在一大类应用程序,其中输出仅在时间瞬间的子集上重要。因此,导出了ILC更新律,该律可以在任何时间点子集上进行跟踪,并且随着时间点从跟踪目标中移除,性能显示出增加。在多变量测试设备上的实验结果证实,点对点ILC比使用标准ILC和先验指定参考获得的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence and robustness of a point-to-point iterative learning control algorithm
Iterative learning control (ILC) is a methodology applied to systems which repeatedly perform a tracking task defined over a fixed, finite time duration. In this approach the output is specified at all points in this interval, however there exists a broad class of applications in which the output is only important at a subset of time instants. An ILC update law is therefore derived which enables tracking at any subset of time points, with performance shown to increase as time points are removed from the tracking objective. Experimental results using a multi-variable test facility confirm that point-to-point ILC leads to superior performance than can be obtained using standard ILC and an a priori specified reference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信