{"title":"四维扫描透射电子显微镜:第一部分:成像,应变映射和缺陷检测","authors":"A. Johnston-Peck, A. Herzing","doi":"10.31399/asm.edfa.2023-3.p012","DOIUrl":null,"url":null,"abstract":"\n Four-dimensional scanning transmission electron microscopy (4D-STEM) is a spatially resolved electron diffraction technique that records the electron scattering distribution at each sampling point. 4D-STEM provides researchers with information that can be analyzed in a multitude of ways to characterize a sample’s structure, including imaging, strain measurement, and defect analysis. This article introduces the basics of the technique and some areas of application with an emphasis on semiconductor materials.","PeriodicalId":431761,"journal":{"name":"EDFA Technical Articles","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four-Dimensional Scanning Transmission Electron Microscopy: Part I: Imaging, Strain Mapping, and Defect Detection\",\"authors\":\"A. Johnston-Peck, A. Herzing\",\"doi\":\"10.31399/asm.edfa.2023-3.p012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Four-dimensional scanning transmission electron microscopy (4D-STEM) is a spatially resolved electron diffraction technique that records the electron scattering distribution at each sampling point. 4D-STEM provides researchers with information that can be analyzed in a multitude of ways to characterize a sample’s structure, including imaging, strain measurement, and defect analysis. This article introduces the basics of the technique and some areas of application with an emphasis on semiconductor materials.\",\"PeriodicalId\":431761,\"journal\":{\"name\":\"EDFA Technical Articles\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EDFA Technical Articles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.edfa.2023-3.p012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EDFA Technical Articles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.edfa.2023-3.p012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Four-Dimensional Scanning Transmission Electron Microscopy: Part I: Imaging, Strain Mapping, and Defect Detection
Four-dimensional scanning transmission electron microscopy (4D-STEM) is a spatially resolved electron diffraction technique that records the electron scattering distribution at each sampling point. 4D-STEM provides researchers with information that can be analyzed in a multitude of ways to characterize a sample’s structure, including imaging, strain measurement, and defect analysis. This article introduces the basics of the technique and some areas of application with an emphasis on semiconductor materials.