基于高斯混合模型的语音转换Viterbi算法

Zhi-Hua Jian, Yang Zhen
{"title":"基于高斯混合模型的语音转换Viterbi算法","authors":"Zhi-Hua Jian, Yang Zhen","doi":"10.1109/ISPACS.2007.4445816","DOIUrl":null,"url":null,"abstract":"A novel method for voice conversion based on Viterbi algorithm is proposed in this paper, which uses the matrix of transition probabilities of the target speaker to represent the relationship between the subsequent frames, and then determines the most appropriate component of the GMM by utilizing the Viterbi algorithm for each frame of the source speaker. It avoids the spectral discontinuities between adjacent frames and the spectral averaging. Both objective and subjective evaluations have demonstrated that the proposed method improves the performance of the conventional voice conversion system based on GMM.","PeriodicalId":220276,"journal":{"name":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Voice conversion using Viterbi algorithm based on Gaussian mixture model\",\"authors\":\"Zhi-Hua Jian, Yang Zhen\",\"doi\":\"10.1109/ISPACS.2007.4445816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method for voice conversion based on Viterbi algorithm is proposed in this paper, which uses the matrix of transition probabilities of the target speaker to represent the relationship between the subsequent frames, and then determines the most appropriate component of the GMM by utilizing the Viterbi algorithm for each frame of the source speaker. It avoids the spectral discontinuities between adjacent frames and the spectral averaging. Both objective and subjective evaluations have demonstrated that the proposed method improves the performance of the conventional voice conversion system based on GMM.\",\"PeriodicalId\":220276,\"journal\":{\"name\":\"2007 International Symposium on Intelligent Signal Processing and Communication Systems\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Intelligent Signal Processing and Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2007.4445816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2007.4445816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于Viterbi算法的语音转换新方法,该方法利用目标说话人的过渡概率矩阵来表示后续帧之间的关系,然后利用Viterbi算法对源说话人的每一帧确定最合适的GMM分量。它避免了相邻帧之间的频谱不连续和频谱平均。客观和主观评价均表明,该方法提高了基于GMM的传统语音转换系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voice conversion using Viterbi algorithm based on Gaussian mixture model
A novel method for voice conversion based on Viterbi algorithm is proposed in this paper, which uses the matrix of transition probabilities of the target speaker to represent the relationship between the subsequent frames, and then determines the most appropriate component of the GMM by utilizing the Viterbi algorithm for each frame of the source speaker. It avoids the spectral discontinuities between adjacent frames and the spectral averaging. Both objective and subjective evaluations have demonstrated that the proposed method improves the performance of the conventional voice conversion system based on GMM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信