利用多输入单输出(MISO) ARX结构和级联神经网络进行洪水水位建模以提高性能

F. Ruslan, A. Samad, Zainazlan Md Zain, R. Adnan
{"title":"利用多输入单输出(MISO) ARX结构和级联神经网络进行洪水水位建模以提高性能","authors":"F. Ruslan, A. Samad, Zainazlan Md Zain, R. Adnan","doi":"10.1109/SPC.2013.6735135","DOIUrl":null,"url":null,"abstract":"Flood water level prediction using system identification technique is still new area for most of the researchers. This is due to the dynamics of the flood water level itself that is often characterized as highly nonlinear. Thus, it is quite a challenging task to represent the flood water level behavioural in mathematical expressions. This paper presents flood water level modelling using MISO (Multiple Input Single Output) ARX (Autoregressive Exogenous Input) structure and cascaded Neural Network model for performance improvement. In this paper, the transfer function relating the input parameters and output parameter was identified with the aid of MISO ARX model. The input and output parameters are based on real time data obtained from Department of Irrigation and Drainage Malaysia. However, the MISO ARX performance result is not quite impressive to look into. Hence, Neural Network model is cascaded to the MISO ARX model to improve the result. Simulation results show that the proposed cascaded model provides improved prediction performance.","PeriodicalId":198247,"journal":{"name":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flood water level modelling using Multiple Input Single Output (MISO) ARX structure and cascaded Neural Network for performance improvement\",\"authors\":\"F. Ruslan, A. Samad, Zainazlan Md Zain, R. Adnan\",\"doi\":\"10.1109/SPC.2013.6735135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flood water level prediction using system identification technique is still new area for most of the researchers. This is due to the dynamics of the flood water level itself that is often characterized as highly nonlinear. Thus, it is quite a challenging task to represent the flood water level behavioural in mathematical expressions. This paper presents flood water level modelling using MISO (Multiple Input Single Output) ARX (Autoregressive Exogenous Input) structure and cascaded Neural Network model for performance improvement. In this paper, the transfer function relating the input parameters and output parameter was identified with the aid of MISO ARX model. The input and output parameters are based on real time data obtained from Department of Irrigation and Drainage Malaysia. However, the MISO ARX performance result is not quite impressive to look into. Hence, Neural Network model is cascaded to the MISO ARX model to improve the result. Simulation results show that the proposed cascaded model provides improved prediction performance.\",\"PeriodicalId\":198247,\"journal\":{\"name\":\"2013 IEEE Conference on Systems, Process & Control (ICSPC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Systems, Process & Control (ICSPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPC.2013.6735135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPC.2013.6735135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用系统识别技术进行洪水水位预测对大多数研究者来说还是一个新的研究领域。这是由于洪水水位本身的动态变化通常具有高度非线性的特征。因此,用数学表达式来表示洪水水位的行为是一项非常具有挑战性的任务。本文提出了利用多输入单输出(MISO) ARX(自回归外生输入)结构和级联神经网络模型进行洪水水位建模的方法。本文借助MISO ARX模型,对输入参数与输出参数之间的传递函数进行辨识。输入和输出参数是基于从马来西亚灌溉和排涝部获得的实时数据。然而,MISO ARX的性能结果并不是很令人印象深刻。因此,将神经网络模型级联到MISO ARX模型以改进结果。仿真结果表明,所提出的级联模型具有较好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flood water level modelling using Multiple Input Single Output (MISO) ARX structure and cascaded Neural Network for performance improvement
Flood water level prediction using system identification technique is still new area for most of the researchers. This is due to the dynamics of the flood water level itself that is often characterized as highly nonlinear. Thus, it is quite a challenging task to represent the flood water level behavioural in mathematical expressions. This paper presents flood water level modelling using MISO (Multiple Input Single Output) ARX (Autoregressive Exogenous Input) structure and cascaded Neural Network model for performance improvement. In this paper, the transfer function relating the input parameters and output parameter was identified with the aid of MISO ARX model. The input and output parameters are based on real time data obtained from Department of Irrigation and Drainage Malaysia. However, the MISO ARX performance result is not quite impressive to look into. Hence, Neural Network model is cascaded to the MISO ARX model to improve the result. Simulation results show that the proposed cascaded model provides improved prediction performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信