通信系统中符号检测的注意递归网络

K. Chia, Vishnu Monn Baskaran, Koksheik Wong, M. L. Sim, Chong Hin Chee
{"title":"通信系统中符号检测的注意递归网络","authors":"K. Chia, Vishnu Monn Baskaran, Koksheik Wong, M. L. Sim, Chong Hin Chee","doi":"10.1109/ISPACS57703.2022.10082803","DOIUrl":null,"url":null,"abstract":"One major challenge for wireless receivers to maintain information fidelity involves the demodulation of faded signals in noisy environments. Typical demodulation techniques for M-ary quadrature amplitude modulated (M-QAM) signal utilize variants of coherent demodulation. This paper explores deep learning (DL), specifically by using a proposed architecture recurrent-attention networks to compliment, or even overcome the limitations of demodulating M-QAM symbols. The proposed model is shown to outperform the benchmark coherent demodulator and other DL-based demodulators such as convolutional neural network (CNN), recurrent neural network (RNN) and the hybrid of both up to 5 dB learning gain at a lower model complexity and requires less memory usage.","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent Network with Attention for Symbol Detection in Communication Systems\",\"authors\":\"K. Chia, Vishnu Monn Baskaran, Koksheik Wong, M. L. Sim, Chong Hin Chee\",\"doi\":\"10.1109/ISPACS57703.2022.10082803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One major challenge for wireless receivers to maintain information fidelity involves the demodulation of faded signals in noisy environments. Typical demodulation techniques for M-ary quadrature amplitude modulated (M-QAM) signal utilize variants of coherent demodulation. This paper explores deep learning (DL), specifically by using a proposed architecture recurrent-attention networks to compliment, or even overcome the limitations of demodulating M-QAM symbols. The proposed model is shown to outperform the benchmark coherent demodulator and other DL-based demodulators such as convolutional neural network (CNN), recurrent neural network (RNN) and the hybrid of both up to 5 dB learning gain at a lower model complexity and requires less memory usage.\",\"PeriodicalId\":410603,\"journal\":{\"name\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS57703.2022.10082803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线接收器维持资讯保真度的主要挑战之一,是如何在杂讯环境中解调消褪讯号。典型的正交调幅(M-QAM)信号解调技术利用相干解调的变体。本文探讨了深度学习(DL),特别是通过使用提出的架构循环注意网络来补充甚至克服解调M-QAM符号的限制。所提出的模型被证明优于基准相干解调器和其他基于dl的解调器,如卷积神经网络(CNN),循环神经网络(RNN)以及两者的混合,以更低的模型复杂度和更少的内存使用获得高达5 dB的学习增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recurrent Network with Attention for Symbol Detection in Communication Systems
One major challenge for wireless receivers to maintain information fidelity involves the demodulation of faded signals in noisy environments. Typical demodulation techniques for M-ary quadrature amplitude modulated (M-QAM) signal utilize variants of coherent demodulation. This paper explores deep learning (DL), specifically by using a proposed architecture recurrent-attention networks to compliment, or even overcome the limitations of demodulating M-QAM symbols. The proposed model is shown to outperform the benchmark coherent demodulator and other DL-based demodulators such as convolutional neural network (CNN), recurrent neural network (RNN) and the hybrid of both up to 5 dB learning gain at a lower model complexity and requires less memory usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信