{"title":"纳米线MOSFET III-V栅极周围量子约束的紧凑建模","authors":"A. Abdelmoneam, B. Iñíguez, M. Fedawy","doi":"10.1109/CDE.2018.8597131","DOIUrl":null,"url":null,"abstract":"In this paper, a compact equation for calculating energy sub-bands inside III-V gate all around nanowire MOSFET is developed taking into consideration the penetration of the wave function into the gate oxide and the effective mass discontinuity at the semiconductor-oxide interface. The values of the sub-band energies result from solving Schrodinger's equation in cylindrical coordinates is expressed in Bessel functions. We use an approximation for Bessel functions with the introduction of one fitting parameter. Additionally, a compact equation is developed for the potential due to charge associated with the first sub-band inside the semiconductor. The results show very good agreement with self-consistent Schrodinger-Poisson solver data.","PeriodicalId":361044,"journal":{"name":"2018 Spanish Conference on Electron Devices (CDE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Compact Modelling of Quantum Confinement in III-V Gate All Around Nanowire MOSFET\",\"authors\":\"A. Abdelmoneam, B. Iñíguez, M. Fedawy\",\"doi\":\"10.1109/CDE.2018.8597131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a compact equation for calculating energy sub-bands inside III-V gate all around nanowire MOSFET is developed taking into consideration the penetration of the wave function into the gate oxide and the effective mass discontinuity at the semiconductor-oxide interface. The values of the sub-band energies result from solving Schrodinger's equation in cylindrical coordinates is expressed in Bessel functions. We use an approximation for Bessel functions with the introduction of one fitting parameter. Additionally, a compact equation is developed for the potential due to charge associated with the first sub-band inside the semiconductor. The results show very good agreement with self-consistent Schrodinger-Poisson solver data.\",\"PeriodicalId\":361044,\"journal\":{\"name\":\"2018 Spanish Conference on Electron Devices (CDE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Spanish Conference on Electron Devices (CDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDE.2018.8597131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Spanish Conference on Electron Devices (CDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDE.2018.8597131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact Modelling of Quantum Confinement in III-V Gate All Around Nanowire MOSFET
In this paper, a compact equation for calculating energy sub-bands inside III-V gate all around nanowire MOSFET is developed taking into consideration the penetration of the wave function into the gate oxide and the effective mass discontinuity at the semiconductor-oxide interface. The values of the sub-band energies result from solving Schrodinger's equation in cylindrical coordinates is expressed in Bessel functions. We use an approximation for Bessel functions with the introduction of one fitting parameter. Additionally, a compact equation is developed for the potential due to charge associated with the first sub-band inside the semiconductor. The results show very good agreement with self-consistent Schrodinger-Poisson solver data.