振动分析:基于开尔文元的两质量模型参数优化

A. Kuznetsov, M. Mammadov, I. Sultan, Ibrahim Hajilarov
{"title":"振动分析:基于开尔文元的两质量模型参数优化","authors":"A. Kuznetsov, M. Mammadov, I. Sultan, Ibrahim Hajilarov","doi":"10.1109/ICCA.2010.5524271","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of finding optimal parameters of the two mass model that represents vehicle suspension systems. The analysis of the problem is based on finding analytical solution of the system of coupled Ordinary Differential Equations (ODE). Such a technique allows us to generate optimization problem, where an objective function should be minimized, in accordance with ISO 2631 standard formula of admissible acceleration levels. That ensures maximum comfort for a driver and passenger in a moving vehicle on the considered highways.","PeriodicalId":155562,"journal":{"name":"IEEE ICCA 2010","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vibration analysis: Optimization of parameters of the two mass model based on Kelvin elements\",\"authors\":\"A. Kuznetsov, M. Mammadov, I. Sultan, Ibrahim Hajilarov\",\"doi\":\"10.1109/ICCA.2010.5524271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the problem of finding optimal parameters of the two mass model that represents vehicle suspension systems. The analysis of the problem is based on finding analytical solution of the system of coupled Ordinary Differential Equations (ODE). Such a technique allows us to generate optimization problem, where an objective function should be minimized, in accordance with ISO 2631 standard formula of admissible acceleration levels. That ensures maximum comfort for a driver and passenger in a moving vehicle on the considered highways.\",\"PeriodicalId\":155562,\"journal\":{\"name\":\"IEEE ICCA 2010\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ICCA 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2010.5524271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ICCA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2010.5524271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了代表汽车悬架系统的两个质量模型的最优参数求解问题。该问题的分析是基于寻找耦合常微分方程(ODE)系统的解析解。这种技术允许我们生成优化问题,其中目标函数应该最小化,按照ISO 2631标准公式的允许加速度水平。这确保了驾驶员和乘客在高速公路上行驶时的最大舒适度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vibration analysis: Optimization of parameters of the two mass model based on Kelvin elements
In this paper we consider the problem of finding optimal parameters of the two mass model that represents vehicle suspension systems. The analysis of the problem is based on finding analytical solution of the system of coupled Ordinary Differential Equations (ODE). Such a technique allows us to generate optimization problem, where an objective function should be minimized, in accordance with ISO 2631 standard formula of admissible acceleration levels. That ensures maximum comfort for a driver and passenger in a moving vehicle on the considered highways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信