数字识别分类器的聚类相关训练方法

Igor Sevo, Aleksandar Kelecevic
{"title":"数字识别分类器的聚类相关训练方法","authors":"Igor Sevo, Aleksandar Kelecevic","doi":"10.1109/INDEL.2016.7797785","DOIUrl":null,"url":null,"abstract":"This paper presents a convolutional neural network clustering approach for handwritten digits recognition. Neural networks were trained individually, using the same training set and combined into clusters, depending on the training method used. These clusters formed a layered architecture, where each layer attempted to recognize the given digit, when the previous layers were not able to do so with sufficient certainty. We examine various ways of combining such clusters and training their constituent networks.","PeriodicalId":273613,"journal":{"name":"2016 International Symposium on Industrial Electronics (INDEL)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustered class-dependant training method for digit recognition classifiers\",\"authors\":\"Igor Sevo, Aleksandar Kelecevic\",\"doi\":\"10.1109/INDEL.2016.7797785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a convolutional neural network clustering approach for handwritten digits recognition. Neural networks were trained individually, using the same training set and combined into clusters, depending on the training method used. These clusters formed a layered architecture, where each layer attempted to recognize the given digit, when the previous layers were not able to do so with sufficient certainty. We examine various ways of combining such clusters and training their constituent networks.\",\"PeriodicalId\":273613,\"journal\":{\"name\":\"2016 International Symposium on Industrial Electronics (INDEL)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Symposium on Industrial Electronics (INDEL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDEL.2016.7797785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Industrial Electronics (INDEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDEL.2016.7797785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种用于手写体数字识别的卷积神经网络聚类方法。神经网络被单独训练,使用相同的训练集,并根据所使用的训练方法组合成簇。这些集群形成了一个分层架构,当前一层不能足够确定地识别给定的数字时,每一层都试图识别给定的数字。我们研究了组合这些集群和训练它们的组成网络的各种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustered class-dependant training method for digit recognition classifiers
This paper presents a convolutional neural network clustering approach for handwritten digits recognition. Neural networks were trained individually, using the same training set and combined into clusters, depending on the training method used. These clusters formed a layered architecture, where each layer attempted to recognize the given digit, when the previous layers were not able to do so with sufficient certainty. We examine various ways of combining such clusters and training their constituent networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信