{"title":"高性能kesterite太阳能电池的高强度和集成sun - voc特性","authors":"O. Gunawan, T. Gokmen, D. Mitzi","doi":"10.1109/PVSC.2015.7355690","DOIUrl":null,"url":null,"abstract":"Kesterite or Cu2ZnSn(Se,S)4 (CZTSSe) is an emerging earth-abundant thin-film solar cell technology with current world record of 12.6% which is still far behind its cousin, the CuInGaSe technology. We investigated Suns-Voc characteristics of our high performance kesterite solar cells using two setups: (1) Low intensity (1 sun) Suns-Voc system integrated to the standard solar simulator using motorized continuous density filter. (2) High intensity (~300 suns) Suns-Voc. The CZTSSe high intensity Suns-Voc curves exhibit bending at high intensity, which reveal several Voc limiting mechanisms that could impact the Voc at 1 sun such as: low bulk conductivity (because of low hole density or low mobility), bulk or interface defects including tail states, and a non-ohmic back contact for low carrier density CZTSSe. The latter problem can be detected by high intensity Suns-Voc with different infra red bandpass filters. Some of these limiting factors contribute to an artificially lower Jsc-Voc diode ideality factor compared to that of standard light J-V. The Suns-Voc techniques developed here is also applicable to other thin film solar cell technologies.","PeriodicalId":427842,"journal":{"name":"2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High intensity and integrated Suns-Voc characterization of high performance kesterite solar cells\",\"authors\":\"O. Gunawan, T. Gokmen, D. Mitzi\",\"doi\":\"10.1109/PVSC.2015.7355690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kesterite or Cu2ZnSn(Se,S)4 (CZTSSe) is an emerging earth-abundant thin-film solar cell technology with current world record of 12.6% which is still far behind its cousin, the CuInGaSe technology. We investigated Suns-Voc characteristics of our high performance kesterite solar cells using two setups: (1) Low intensity (1 sun) Suns-Voc system integrated to the standard solar simulator using motorized continuous density filter. (2) High intensity (~300 suns) Suns-Voc. The CZTSSe high intensity Suns-Voc curves exhibit bending at high intensity, which reveal several Voc limiting mechanisms that could impact the Voc at 1 sun such as: low bulk conductivity (because of low hole density or low mobility), bulk or interface defects including tail states, and a non-ohmic back contact for low carrier density CZTSSe. The latter problem can be detected by high intensity Suns-Voc with different infra red bandpass filters. Some of these limiting factors contribute to an artificially lower Jsc-Voc diode ideality factor compared to that of standard light J-V. The Suns-Voc techniques developed here is also applicable to other thin film solar cell technologies.\",\"PeriodicalId\":427842,\"journal\":{\"name\":\"2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2015.7355690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2015.7355690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High intensity and integrated Suns-Voc characterization of high performance kesterite solar cells
Kesterite or Cu2ZnSn(Se,S)4 (CZTSSe) is an emerging earth-abundant thin-film solar cell technology with current world record of 12.6% which is still far behind its cousin, the CuInGaSe technology. We investigated Suns-Voc characteristics of our high performance kesterite solar cells using two setups: (1) Low intensity (1 sun) Suns-Voc system integrated to the standard solar simulator using motorized continuous density filter. (2) High intensity (~300 suns) Suns-Voc. The CZTSSe high intensity Suns-Voc curves exhibit bending at high intensity, which reveal several Voc limiting mechanisms that could impact the Voc at 1 sun such as: low bulk conductivity (because of low hole density or low mobility), bulk or interface defects including tail states, and a non-ohmic back contact for low carrier density CZTSSe. The latter problem can be detected by high intensity Suns-Voc with different infra red bandpass filters. Some of these limiting factors contribute to an artificially lower Jsc-Voc diode ideality factor compared to that of standard light J-V. The Suns-Voc techniques developed here is also applicable to other thin film solar cell technologies.