Ruike Jiang, Wei Huang, Nan Ma, Fan Hong, Ying Zhao, Xiaoru Yuan
{"title":"基于多维时间序列数据可视化分析的时间模式分析与源检测","authors":"Ruike Jiang, Wei Huang, Nan Ma, Fan Hong, Ying Zhao, Xiaoru Yuan","doi":"10.1109/VAST.2017.8585548","DOIUrl":null,"url":null,"abstract":"In VAST Challenge 2017, we developed a visual exploration system for detection of sensor anomaly, pattern of chemical distribution and responsible factory for each release of chemical. In this report, we discuss details of our data preprocessing, design, implementation and how we found our answer.","PeriodicalId":149607,"journal":{"name":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal Pattern Analysis and Source Detection through Visual Analysis on Multi-Dimensional Time Series Data\",\"authors\":\"Ruike Jiang, Wei Huang, Nan Ma, Fan Hong, Ying Zhao, Xiaoru Yuan\",\"doi\":\"10.1109/VAST.2017.8585548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In VAST Challenge 2017, we developed a visual exploration system for detection of sensor anomaly, pattern of chemical distribution and responsible factory for each release of chemical. In this report, we discuss details of our data preprocessing, design, implementation and how we found our answer.\",\"PeriodicalId\":149607,\"journal\":{\"name\":\"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VAST.2017.8585548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2017.8585548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal Pattern Analysis and Source Detection through Visual Analysis on Multi-Dimensional Time Series Data
In VAST Challenge 2017, we developed a visual exploration system for detection of sensor anomaly, pattern of chemical distribution and responsible factory for each release of chemical. In this report, we discuss details of our data preprocessing, design, implementation and how we found our answer.