用于地图和动物识别的神经网络图像理解系统

M. Zhenjiang, Y. Baozong
{"title":"用于地图和动物识别的神经网络图像理解系统","authors":"M. Zhenjiang, Y. Baozong","doi":"10.1109/TENCON.1993.320158","DOIUrl":null,"url":null,"abstract":"The paper presents the structure and design principle of a neural network (NN) image understanding system which is used to recognize and analyze maps and animals with the features of translation-, scale-, and rotation-invariance. The utilized network is nonlinear continuous neural network using its associative memory function. We designed this neural network system using an optimal design method. The feature parameters which are inputted into the system to carry out the recognition task are Zernike moments. Through extensive experimentation with translation, scale, rotation as well as distortion (such as cutting off some parts of the inputted image), we can see this system is a high robustness and fault-tolerance image understanding system.<<ETX>>","PeriodicalId":110496,"journal":{"name":"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A NN image understanding system for maps and animals recognition\",\"authors\":\"M. Zhenjiang, Y. Baozong\",\"doi\":\"10.1109/TENCON.1993.320158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the structure and design principle of a neural network (NN) image understanding system which is used to recognize and analyze maps and animals with the features of translation-, scale-, and rotation-invariance. The utilized network is nonlinear continuous neural network using its associative memory function. We designed this neural network system using an optimal design method. The feature parameters which are inputted into the system to carry out the recognition task are Zernike moments. Through extensive experimentation with translation, scale, rotation as well as distortion (such as cutting off some parts of the inputted image), we can see this system is a high robustness and fault-tolerance image understanding system.<<ETX>>\",\"PeriodicalId\":110496,\"journal\":{\"name\":\"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.1993.320158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.1993.320158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了一种神经网络(NN)图像理解系统的结构和设计原理,该系统用于识别和分析具有平移不变性、比例不变性和旋转不变性的地图和动物。所使用的网络是利用联想记忆函数的非线性连续神经网络。采用优化设计方法设计了该神经网络系统。输入系统完成识别任务的特征参数为泽尼克矩。通过平移、缩放、旋转以及扭曲(例如切断输入图像的某些部分)的大量实验,我们可以看到该系统是一个高鲁棒性和容错的图像理解系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NN image understanding system for maps and animals recognition
The paper presents the structure and design principle of a neural network (NN) image understanding system which is used to recognize and analyze maps and animals with the features of translation-, scale-, and rotation-invariance. The utilized network is nonlinear continuous neural network using its associative memory function. We designed this neural network system using an optimal design method. The feature parameters which are inputted into the system to carry out the recognition task are Zernike moments. Through extensive experimentation with translation, scale, rotation as well as distortion (such as cutting off some parts of the inputted image), we can see this system is a high robustness and fault-tolerance image understanding system.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信