{"title":"最小力矩四足机器人的运动学分析与优化设计","authors":"Jingwen Zhang, Junjie Shen, D. Hong","doi":"10.1109/UR49135.2020.9144804","DOIUrl":null,"url":null,"abstract":"With a unique kinematic arrangement, a new type of quadruped robot with reduced degrees of freedom (DoF) requires minimal-torque actuators to achieve high-payload locomotion. This paper focuses on the kinematic analysis and design optimization for robots of this type. To plan and control its change of posture, a necessary strategy to find feasible solutions of full-body inverse kinematics under additional kinematic constraints is introduced. A design method via nonlinear programming (NLP) is first presented in order to optimize link parameters with guarantee to a series of successive steps. Workspace is also investigated to prepare for further dynamic motion planning. We have verified feasibility of proposed methods with software simulations and hardware implementations, e.g., omni-directional walking and situ rotation.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic Analysis and Design Optimization for a Reduced-DoF Quadruped Robot with Minimal Torque Requirements\",\"authors\":\"Jingwen Zhang, Junjie Shen, D. Hong\",\"doi\":\"10.1109/UR49135.2020.9144804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With a unique kinematic arrangement, a new type of quadruped robot with reduced degrees of freedom (DoF) requires minimal-torque actuators to achieve high-payload locomotion. This paper focuses on the kinematic analysis and design optimization for robots of this type. To plan and control its change of posture, a necessary strategy to find feasible solutions of full-body inverse kinematics under additional kinematic constraints is introduced. A design method via nonlinear programming (NLP) is first presented in order to optimize link parameters with guarantee to a series of successive steps. Workspace is also investigated to prepare for further dynamic motion planning. We have verified feasibility of proposed methods with software simulations and hardware implementations, e.g., omni-directional walking and situ rotation.\",\"PeriodicalId\":360208,\"journal\":{\"name\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UR49135.2020.9144804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinematic Analysis and Design Optimization for a Reduced-DoF Quadruped Robot with Minimal Torque Requirements
With a unique kinematic arrangement, a new type of quadruped robot with reduced degrees of freedom (DoF) requires minimal-torque actuators to achieve high-payload locomotion. This paper focuses on the kinematic analysis and design optimization for robots of this type. To plan and control its change of posture, a necessary strategy to find feasible solutions of full-body inverse kinematics under additional kinematic constraints is introduced. A design method via nonlinear programming (NLP) is first presented in order to optimize link parameters with guarantee to a series of successive steps. Workspace is also investigated to prepare for further dynamic motion planning. We have verified feasibility of proposed methods with software simulations and hardware implementations, e.g., omni-directional walking and situ rotation.