基于对称模式和高频词的高效无监督词分类提取

Liu Rong, Zhang Zhiping, Pang Ning
{"title":"基于对称模式和高频词的高效无监督词分类提取","authors":"Liu Rong, Zhang Zhiping, Pang Ning","doi":"10.1109/ICAIE.2010.5641103","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for discovering and extracting sets of words sharing semantic meaning. We utilize meta-patterns of high frequency words and content words in order to discover pattern candidates. Symmetric patterns are then identified using graph-based measures, and word categories are created based on graph clique sets. Our method is the pattern-based method that requires no seed patterns or words provided manually. For Chinese, only POS is carried out in advance. The computation time for large corpora is linear. The result is preferable by manual judgment.","PeriodicalId":216006,"journal":{"name":"2010 International Conference on Artificial Intelligence and Education (ICAIE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient unsupervised extraction of words categories using symmetric patterns and high frequency words\",\"authors\":\"Liu Rong, Zhang Zhiping, Pang Ning\",\"doi\":\"10.1109/ICAIE.2010.5641103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach for discovering and extracting sets of words sharing semantic meaning. We utilize meta-patterns of high frequency words and content words in order to discover pattern candidates. Symmetric patterns are then identified using graph-based measures, and word categories are created based on graph clique sets. Our method is the pattern-based method that requires no seed patterns or words provided manually. For Chinese, only POS is carried out in advance. The computation time for large corpora is linear. The result is preferable by manual judgment.\",\"PeriodicalId\":216006,\"journal\":{\"name\":\"2010 International Conference on Artificial Intelligence and Education (ICAIE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Artificial Intelligence and Education (ICAIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIE.2010.5641103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Artificial Intelligence and Education (ICAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIE.2010.5641103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种发现和提取共享语义词集的新方法。我们利用高频词和实词的元模式来发现模式候选者。然后使用基于图的度量来识别对称模式,并根据图团集创建词类别。我们的方法是基于模式的方法,不需要手动提供种子模式或单词。对于中国人,只有POS是提前进行的。大型语料库的计算时间是线性的。人工判断的结果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient unsupervised extraction of words categories using symmetric patterns and high frequency words
This paper presents a novel approach for discovering and extracting sets of words sharing semantic meaning. We utilize meta-patterns of high frequency words and content words in order to discover pattern candidates. Symmetric patterns are then identified using graph-based measures, and word categories are created based on graph clique sets. Our method is the pattern-based method that requires no seed patterns or words provided manually. For Chinese, only POS is carried out in advance. The computation time for large corpora is linear. The result is preferable by manual judgment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信