基于$\text{TiO}_{2}$的RRAM热开关参数提取与神经形态工程

Alessandro Milozzi, Daniel Reiser, A. Drost, Thomas-Oliver Neuner, M. Tornow, D. Ielmini
{"title":"基于$\\text{TiO}_{2}$的RRAM热开关参数提取与神经形态工程","authors":"Alessandro Milozzi, Daniel Reiser, A. Drost, Thomas-Oliver Neuner, M. Tornow, D. Ielmini","doi":"10.1109/ESSCIRC55480.2022.9911223","DOIUrl":null,"url":null,"abstract":"Recently, resistive switching random access memory (RRAM) has gained maturity for storage class memory and in-memory computing. For these applications, an improved control of the switching phenomena can lead to higher data density and computing accuracy, thus paving the way for RRAM-based artificial intelligence (AI) accelerators for edge computing. This work presents a study of thermally-induced switching in $\\text{TiO}_{2}$ -based RRAM devices. Thermal switching is explained by defect rediffusion controlled by the activation energy for defect migration in $\\text{TiO}_{2}$. Experiments and simulations support thermal switching as a tool for parameter extraction in RRAM, as well as for novel neuromorphic cognitive functions for brain-inspired computing.","PeriodicalId":168466,"journal":{"name":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal switching of $\\\\text{TiO}_{2}$ -based RRAM for parameter extraction and neuromorphic engineering\",\"authors\":\"Alessandro Milozzi, Daniel Reiser, A. Drost, Thomas-Oliver Neuner, M. Tornow, D. Ielmini\",\"doi\":\"10.1109/ESSCIRC55480.2022.9911223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, resistive switching random access memory (RRAM) has gained maturity for storage class memory and in-memory computing. For these applications, an improved control of the switching phenomena can lead to higher data density and computing accuracy, thus paving the way for RRAM-based artificial intelligence (AI) accelerators for edge computing. This work presents a study of thermally-induced switching in $\\\\text{TiO}_{2}$ -based RRAM devices. Thermal switching is explained by defect rediffusion controlled by the activation energy for defect migration in $\\\\text{TiO}_{2}$. Experiments and simulations support thermal switching as a tool for parameter extraction in RRAM, as well as for novel neuromorphic cognitive functions for brain-inspired computing.\",\"PeriodicalId\":168466,\"journal\":{\"name\":\"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC55480.2022.9911223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC55480.2022.9911223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,电阻式开关随机存取存储器(RRAM)在存储类存储器和内存计算方面已经成熟。对于这些应用,改进对开关现象的控制可以提高数据密度和计算精度,从而为基于rram的边缘计算人工智能(AI)加速器铺平道路。本文介绍了基于$\text{TiO}_{2}$的RRAM器件的热诱导开关研究。热开关的解释是由$\text{TiO}_{2}$中缺陷迁移激活能控制的缺陷再扩散。实验和模拟支持热开关作为RRAM中参数提取的工具,以及用于大脑启发计算的新型神经形态认知功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal switching of $\text{TiO}_{2}$ -based RRAM for parameter extraction and neuromorphic engineering
Recently, resistive switching random access memory (RRAM) has gained maturity for storage class memory and in-memory computing. For these applications, an improved control of the switching phenomena can lead to higher data density and computing accuracy, thus paving the way for RRAM-based artificial intelligence (AI) accelerators for edge computing. This work presents a study of thermally-induced switching in $\text{TiO}_{2}$ -based RRAM devices. Thermal switching is explained by defect rediffusion controlled by the activation energy for defect migration in $\text{TiO}_{2}$. Experiments and simulations support thermal switching as a tool for parameter extraction in RRAM, as well as for novel neuromorphic cognitive functions for brain-inspired computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信