Y. Hirano, M. Kojima, M. Horade, K. Kamiyama, Y. Mae, T. Arai
{"title":"细胞-支架相互作用高速测量系统的研制","authors":"Y. Hirano, M. Kojima, M. Horade, K. Kamiyama, Y. Mae, T. Arai","doi":"10.1109/MHS.2015.7438330","DOIUrl":null,"url":null,"abstract":"Cell-scaffold interaction is important for characterizing cell's mechanism such as differentiation or migration of cells. Therefore analyzing technique of the force exerted by a cell is required. In this research, we aim to realize high speed measurement of cellular traction force by applying the technique of existing vision-based tactile sensor. To achieve the measurement, we need to fabricate cellular scaffold which contain two layers of lattice patterned beads. In this paper, we report about fabrication process of the scaffold and experiment of cell culture on fabricated scaffold.","PeriodicalId":165544,"journal":{"name":"2015 International Symposium on Micro-NanoMechatronics and Human Science (MHS)","volume":"55 16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of high speed measurement system for cell-scaffold interaction\",\"authors\":\"Y. Hirano, M. Kojima, M. Horade, K. Kamiyama, Y. Mae, T. Arai\",\"doi\":\"10.1109/MHS.2015.7438330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell-scaffold interaction is important for characterizing cell's mechanism such as differentiation or migration of cells. Therefore analyzing technique of the force exerted by a cell is required. In this research, we aim to realize high speed measurement of cellular traction force by applying the technique of existing vision-based tactile sensor. To achieve the measurement, we need to fabricate cellular scaffold which contain two layers of lattice patterned beads. In this paper, we report about fabrication process of the scaffold and experiment of cell culture on fabricated scaffold.\",\"PeriodicalId\":165544,\"journal\":{\"name\":\"2015 International Symposium on Micro-NanoMechatronics and Human Science (MHS)\",\"volume\":\"55 16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Micro-NanoMechatronics and Human Science (MHS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MHS.2015.7438330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Micro-NanoMechatronics and Human Science (MHS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2015.7438330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of high speed measurement system for cell-scaffold interaction
Cell-scaffold interaction is important for characterizing cell's mechanism such as differentiation or migration of cells. Therefore analyzing technique of the force exerted by a cell is required. In this research, we aim to realize high speed measurement of cellular traction force by applying the technique of existing vision-based tactile sensor. To achieve the measurement, we need to fabricate cellular scaffold which contain two layers of lattice patterned beads. In this paper, we report about fabrication process of the scaffold and experiment of cell culture on fabricated scaffold.