利用化学垂直沉积技术制备多晶HgI2薄膜及其光学性能

Jie Zhou, W. Shi, Guang-pu Wei, Juan Qin, Linjun Wang, Jieli Chen
{"title":"利用化学垂直沉积技术制备多晶HgI2薄膜及其光学性能","authors":"Jie Zhou, W. Shi, Guang-pu Wei, Juan Qin, Linjun Wang, Jieli Chen","doi":"10.1117/12.888249","DOIUrl":null,"url":null,"abstract":"Mercuric Iodide (HgI2) is a promising semiconductor material for nuclear radiation detectors working at room temperature, especially for x-ray and γ-ray detectors. The influences of different growth temperatures on qualities of thin films were studied. The structure and optical properties of thin films were characterized by x-ray diffraction spectroscopy, metallography and UV-VIS spectrophotometer. Our results can be summarized as following: XRD analysis shows crystallinity of HgI2 in thin films depends mainly on the growth temperatures, that is, the XRD reflections become stronger with the decrease of the growth temperature. The optimum growth temperature for preparation of polycrystalline HgI2 thin film utilizing vertical deposition technique of chemistry is about 20°C. The corresponding thin film has a good uniformity with thickness of about 800 nm, perpendicular to the substrate along <001> direction. Based on its optical performance testing, our calculations found that HgI2 thin film grown at 20°C has a wide energy band gap of about 2.26 eV.","PeriodicalId":316559,"journal":{"name":"International Conference on Thin Film Physics and Applications","volume":"7995 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and optical properties of polycrystalline HgI2 thin films utilizing vertical deposition technique of chemistry\",\"authors\":\"Jie Zhou, W. Shi, Guang-pu Wei, Juan Qin, Linjun Wang, Jieli Chen\",\"doi\":\"10.1117/12.888249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mercuric Iodide (HgI2) is a promising semiconductor material for nuclear radiation detectors working at room temperature, especially for x-ray and γ-ray detectors. The influences of different growth temperatures on qualities of thin films were studied. The structure and optical properties of thin films were characterized by x-ray diffraction spectroscopy, metallography and UV-VIS spectrophotometer. Our results can be summarized as following: XRD analysis shows crystallinity of HgI2 in thin films depends mainly on the growth temperatures, that is, the XRD reflections become stronger with the decrease of the growth temperature. The optimum growth temperature for preparation of polycrystalline HgI2 thin film utilizing vertical deposition technique of chemistry is about 20°C. The corresponding thin film has a good uniformity with thickness of about 800 nm, perpendicular to the substrate along <001> direction. Based on its optical performance testing, our calculations found that HgI2 thin film grown at 20°C has a wide energy band gap of about 2.26 eV.\",\"PeriodicalId\":316559,\"journal\":{\"name\":\"International Conference on Thin Film Physics and Applications\",\"volume\":\"7995 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Thin Film Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.888249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Thin Film Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.888249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

碘化汞(HgI2)是一种很有前途的半导体材料,可用于室温下的核辐射探测器,特别是x射线和γ射线探测器。研究了不同生长温度对薄膜质量的影响。采用x射线衍射、金相和紫外-可见分光光度计对薄膜的结构和光学性能进行了表征。我们的研究结果如下:XRD分析表明,薄膜中HgI2的结晶度主要取决于生长温度,即随着生长温度的降低,XRD反射变强。利用化学垂直沉积技术制备多晶HgI2薄膜的最佳生长温度约为20℃。相应的薄膜具有良好的均匀性,厚度约为800 nm,沿方向垂直于衬底。基于其光学性能测试,我们的计算发现,在20°C生长的HgI2薄膜具有约2.26 eV的宽能带隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and optical properties of polycrystalline HgI2 thin films utilizing vertical deposition technique of chemistry
Mercuric Iodide (HgI2) is a promising semiconductor material for nuclear radiation detectors working at room temperature, especially for x-ray and γ-ray detectors. The influences of different growth temperatures on qualities of thin films were studied. The structure and optical properties of thin films were characterized by x-ray diffraction spectroscopy, metallography and UV-VIS spectrophotometer. Our results can be summarized as following: XRD analysis shows crystallinity of HgI2 in thin films depends mainly on the growth temperatures, that is, the XRD reflections become stronger with the decrease of the growth temperature. The optimum growth temperature for preparation of polycrystalline HgI2 thin film utilizing vertical deposition technique of chemistry is about 20°C. The corresponding thin film has a good uniformity with thickness of about 800 nm, perpendicular to the substrate along <001> direction. Based on its optical performance testing, our calculations found that HgI2 thin film grown at 20°C has a wide energy band gap of about 2.26 eV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信